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ABSTRACT

We have developed a refined and optimized version of the Wafsat Particle
Model of interstellar neutral gas in the heliosphere, sgictailored for analysis of
IBEX-Lo observations. The former version of the model was usdteranalysis of
neutral He observed bNBEX that resulted in an unexpected conclusion that the in-
terstellar neutral He flow vector wasfi#irent than previously thought and that a new
population of neutral He, dubbed the Warm Breeze, existsarhtliosphere. It was
also used in the reanalysis blyssesobservations that confirmed the original find-
ings on the flow vector, but suggested a significantly higemerature. The present
version model has two strains targeted fdfatient applications, based on an identi-
cal paradigm, but diiering in the implementation and in the treatment of ionaati
losses. We present the model in detail and discuss numeffaciserelated to the
measurement process that potentially modify the resuftingof ISN He observed
by IBEX, and identify those of them that should not be omitted in theukations to
avoid biasing the results. This paper is part of a coordahatzies of papers present-
ing the current state of analysis BEX-Lo observations of ISN He. Details of the
analysis method are presented by Swaczyna et al. (2015)yeantis of the analysis

are presented by Bzowski et al. (2015).

Subject headingsISM: atoms — ISM: clouds — ISM: kinematics and dynamics — methods:

analytical — Methods: data analysis — methods: numerical
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1. Introduction

Our paper presents in detail the Warsaw Test Particle MONEIRM), a previous version
of which was used by Bzowski et al. (2012) in their analysidBREX-Lo data from 2009 and
2010 and by McComas et al. (2015b) in the preliminary analgSiBEX data from 2013 and
2014. Itis an element of a coordinated series of papers piiagehe current state of analysis the
ISN He data using the methodology originally adopted by Bxowsal. (2012), which belongs to
a coordinated set of Special Issue papers on interstellaraie as measured BBEX, introduced
and overviewed by McComas et al. (2015a). In this series, #thaod ofy?-fitting of the data that
feature various correlations, which is an extension andegfent of the method originally used,
is presented by Swaczyna et al. (2015). That paper alsos$isstsome observational aspects of
the analysis, including the compensation of on board dataughput reduction and refinement of
the spin axis determination. Salket al. (2015) and Galli et al. (2015) present an estimatéhe
energy threshold of thBBEX-Lo sensitivity to ISN He. Bzowski et al. (2015) presents tbsuits
of the y? analysis and their interpretation. This coordinated asialyses the WTPM model of

ISN He gas observations presented in this paper.

WTPM has a long history of development and successful agit® going back to mid-
1990s. The first version (Ruwki & Bzowski 1995a; Bzowski et al. 1997) addressed the issue
of the influence of the time dependence of radiation presandeionization rate on the density
and velocity of ISN H inside the heliosphere. It was based smgplified, idealized solar cycle
variation of these quantities. Adaptation of this simptifimodel to ISN He was presented by
Rucinski et al. (2003). Subsequently, the model was extendedcmnamodate the ionization rate
dependence on the heliolatitude (Bzowski 2003) and appbieafér the evolution of the latitudi-
nal structure of the solar wind based on observations of ylaehackscatter glow from SWAN on
SOHO(Bzowski et al. 2003). The next phase of model developmentimiezducing the depen-

dence of radiation pressure on the radial velocity of atontks vespect to the Sun (Tarnopolski
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& Bzowski 2009) and a realistic, measurement-based ionzatte. It was applied to theoreti-
cal studies of the ISN D distribution in the heliosphere (ifgnolski & Bzowski 2008) and to the
determination of the ISN H density at the termination shoc#t an the Local Interstellar Cloud
(LIC) based orUlyssesobservations of Hpickup ions (Bzowski et al. 2008, 2009). Subsequently,
the model was tailored to accommodate ISN He observe@BX (Bzowski et al. 2012). It was
also used by Bzowski et al. (2014) to re-analyze observafimms GASUlysses including the
first analysis of the previously not analyzed data from tis¢ Udyssesorbit in 2007, which had
previously not been analyzed. This analysis brought a flastoresimilar to the original analysis
by Witte (2004), but with a temperature higher by at leadi000 K. It was also used by Bzowski
et al. (2013a) and Park et al. (2014) to analyze the abundafride/O ratio in the LIC based on
IBEX-Lo measurements, and by Kubiak et al. (2014) to discoveaduitional ISN He population
detected byBEX-Lo dubbed the Warm Breeze, which is very likely the secondhtjospheric
population of ISN He. This analysis was also used by Kubial.¢2013) to predict possibilities of
detection of the ISN D flux byBEX-Lo, subsequently found in tHBEX-Lo signal by Rodiguez
Moreno et al. (2013, 2014).

For this round of analysis, the model was revised and opéichiEor test and validation pur-
poses, we developed its new version, the so-called an&lytieM (aWTPM), which is &ectively
the classical hot model, first formulated by Thomas (19783p¢ed to the task of simulating the
ISN He flux observed byBEX This model assumes that the ionization rate is constamttowe
and decreases with the square of heliocentric distance efthdse assumptions, the ionization
losses can be calculated using an analytic formula: herceaime of the model. The new version
of the original WTPM now becomes the numerical WTPM (nWTPM). Revis and optimiza-
tions include adopting improved, more accurate algoritfemsitom tracking and integration over
spin-angle bins and observation time, which results ina@Vezduction of the computational load
needed to compute a full simulation for one set of ISN He patars. aWTPM and nWTPM are

independent codes based on an identical theoretical frankesxcept for the treatment of ion-
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ization losses. NWTPM is coded Fortran andC, and aWTPM is implemented ifiol fram
Research Mathematica. A detailed comparison of aWTPM and nWTPM is provided in Table 1

at the end of Section 2.8.

The two versions of WTPM were thoroughly cross-validatechwiite goal of achieving an
agreement no worse than 1% when run under identical assumsptirhis goal was successfully
achieved, as we demonstrate in this paper. In the followirggpresent the foundations of WTPM
and discuss various observational aspects that need talbesadd by a model intended for use in
an analysis ofBEX-Lo data as presented by Swaczyna et al. (2015)€itting of the observed
count rate. Clearly, the accuracy of a model used to fit therdatt be better than the uncertainties
in the data, which are on the order of12% in the data points with the best statistics. Therefore
one needs to consider all known observatiffieas that potentiallyféect the observed flux, even
if by intuition they may seem subtle and not worth botherinthw\We identify those that indeed
may be neglected and those that should be taken into aceotna analysis. Hence the description

of the model is more detailed than usually provided in thersz literature.

This paper has two main sections. In the first of them, Se@iowe present the baseline
model and discuss fierences between aWTPM and nWTPM which are summarized in Table 1
Cross validation of the two versions is presented in Sectiof® second major section is Sec-
tion 4, which presents — to our knowledge, for the first timéia literature — observatiorffects
influencing the ISN He flux measured BYEX-Lo, including, among others, the variation of the
measured flux during an orbit due to the Earth’s motion ardhedSun and the satellite’s motion
around the Earth,fEects of the tilt of the spin axis to the ecliptic, as well &ets of ionization

losses and its uncertainty. The paper ends with a generahamyrand conclusions.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

—6—
2. Model description

The WTPM is based on the concept of the hot model of neutraisiteitar gas (Fahr 1978;
Thomas 1978; Wu & Judge 1979). In this model, the local diatron function of neutral inter-
stellar gas inside the heliosphere is calculated startomg fin assumed homogeneous distribution
function f.,c (duc; 7) of this gas in the so-called source region outside the hgtiee, where ¢
is the velocity vector of an individual atom ach set of physical parameters of the assumed dis-
tribution function, including the mean velocity vector bktgas relative to the Sug. The model
bears an important assumption that the gas inside the pbbos is collisionless, so the atoms can
be treated as individual, non-interacting point-like @tgeand that far away from the heliosphere
the gas is spatially homogeneous (i.e., the parameatefsthe distribution functionf ,c do not
depend on the location in space). The local distributiorctiem of the gad (Fops Uobs tobs, 77) fOr a
time typs, @ heliocentric velocity vectal,,s, and a location in space given by a heliocentric radius

Vectorryysis given by the product:

f (r)Ob59 l70bSo tobs; 7?) = fLIC (HLIC (r)ObSo lj)obs) ; 7? ) w (rT)Ob& 170b39 tobs’,B) (1)

wherer, c is a function of the local heliocentric velocity,s of an atom at the heliocentric location
Fobs @andw is the probability of survival of the atom of the travel frolmetsource region in front
of the heliosphere to the local poififys ¥Lic (Tobs Fobs) IS @ relation that connects the velocity
vector of the atom af,,s with the velocitys ,c of the atom in the source region of interstellar gas.
B is a function that describes all details of the ionizatiote iaside the heliosphere, including its

dependence on heliolatitude, time, and solar distance.

The survival probabilityw and related ionization processes were extensively diedulbg
Bzowski et al. (2013a) and this discussion will not be repbatre. In short, the survival proba-

bility is calculated as an exponent of the expostioé the atom to ionization:

tobs

w = exp(e) = exp| - fﬁ(?(t) ,t)dt (2)

fLic
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whereg (P(t) ,t) is the ionization rate at a timeat a location inside the heliosphere defined by the
radius vector (t), which traces the trajectory of the atom. Thus, in a genexse of ionization rates
changing with time, varying with heliolatitude, and fatiiroft with solar distance dierent from
1/r2, one needs to calculate the survival probability by intéggathe exposure in the exponent
in Equation 2 numerically. Only for an ionization rate ingdnle with time and heliolatitude and
falling off with the square of solar distance is it possible to calculedealytically using a formula

shown later in the paper.

Calculating the local distribution function for a local veity vops at a locationops requires
finding the relation between the state vector of the atdy, rons) and the velocity vector of the
atomuc in the source region. This relation is a function of the feraeting on the atom. In the
case of hydrogen atoms, the forces include solar gravitysatat radiation pressure, which varies
with solar activity and depends on the radial velocity of #iem (Tarnopolski & Bzowski 2009),
and thus is hard to take into account analytically. In theegdshelium atoms (as well as oxygen
and neon) the radiation pressure is negligible, the forgesisdue to solar gravity, and the relation

ULic (Tobs Fobs) CaN be given analytically. This will be presented later ia plaper.

With the local distribution function established it is edeycalculate its momentsy,, like
density (zeroth moment), vector flux (first moment), etc. yraee obtained by numerically cal-
culating appropriate integrals (see, e.g., Bzowski et @71®uchski et al. 2003; Tarnopolski &

Bzowski 2009):
mi? = fvnf (Fobs Uobs tobs; ) d0. (3)

The integration is done in the solar inertial frame, but img@ple can be performed in any inertial

frame.

The version of the WTPM discussed in this paper hagfardint objective: instead of calcu-
lating moments of the local distribution function of interéar gas in the solar inertial frame, it

simulates results of observations obtained from the nleativan detectofBEX-Lo (Fuselier et al.
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2009). To that end, it must calculate the flux of atoms impiggin the detector and going through
its collimator in the spacecraft inertial frame. TH&EEX spacecraft is spin-stabilized, with the
spin-axis being changed periodically to approximatelyotelthe Sun. The observed region is a
strip on the sky perpendicular to the spin-axis and the mateous field of view (FOV) of the

instrument, defined by the collimator aperture. The coltonanakes the FOV hexagonal in shape,

with transmission decreasing from a maximum value at thesight to zero at the perimeter.

The signal is sampled while the spacecraft is spinning @2 rpm. The observations are
accumulated in 60 identical time slots per spin, which ishexjant to registering them iAy =
6° spin-angle bins. While the spin axis is not varying during a&bitp the actual observation
time is split into alternating sub-intervals correspomyia eight diferent energy settings of the
instrument, the so-called energy steps. The observattervad adopted for analysis is a sum of
sub-intervals of good timest; ;, i.e., the time intervalg for orbit i with the data considered to be

adequate for analysis (@bius et al. 2012; Leonard et al. 2015).

Consequently, the simulation software must be able to caieuhe flux corresponding to a
given line of sight of the detector, defined by the pointingh## spin-axigp, ¢p) and the spin-
angley at a given time moment, taking into account the collimator transmission functibn
Denoting the observed flux for theh spin-angle bin and timeasF (Ap, ¢p, ¥, t; ), the program
subsequently calculates average values of the flux overasmgte bins, centered &k and having
a width Ay = 6° and over good time intervalst;;, which yields the value of the average flux

(Foro (Ap, ¢p, Yi; 7)) ay a7 fOr @ given orbit and spin-angle bif:

B +AG) [ ya+Ay/2
N; L f F (/1P9 ¢P9 w, t, ﬁ)dl// dt

—Au/2
(Forb (A, #p, Yi; ) py T = K -
; Alﬁ ijjl Atij

The summation goes over &l intervals of good times on orbit Details of the calculations are

tij

(4)

presented in the following sections.
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2.1. Calculation of the distribution function in the LIC

To calculate the local distribution function, defined in Btjan 1, first one needs to calculate
fLic (Fuc (Tobs Tobs) ; ), @nd to that end, one needs to find the relatiga (tops Fobs) betWeen the
state vector of an atotf¥,ps Mons) and the velocity of the atom) ¢ in the source region of neutral
interstellar atoms, assumed to be at a distapctom the Sun (for the rationale, see Section 4.2).
This relation can be found either by solving the equation ofiom of the atom with the starting
conditions(Zops, Fobs), OF — in the case of the purely Keplerian motion of ISN He atamtbe field
of solar gravity — analytically. The first solution was preta, e.g., by Ruéiski & Bzowski
(1995b) and Tarnopolski & Bzowski (2009) and will not be regeedahere. The analytic solution
is well known and has been widely used, recently, e.dillél & Cohen (2012) and Miler et al.
(2013). The implementation used in the WTPM is shown hereHerdompleteness of model

presentation.

The atom is moving on a hyperbolic Keplerian orbit with then$uthe focus and we know
the velocityvops and positionryps Of the atom in a given time moment. The speed of the atom is

1/2

Vobs = (Tobs - Dobs) > and the distance from the Sughs = (Fops- Fons)” 2. Thus we can immediately

calculate the total mechanical enef§yand angular momentui per unit mass:

Yobs _ GM

> 0; L= Fobs X Uobs, (5)
2 lNobs

E =

with GM being the product of the gravity constant and solar massjinpéemented as the Gauss
solar gravity constant due to its high accuracy. The motsoplanar and the angular momentum
vector determines the direction perpendicular to the akplane. We also calculate the local radial
speed ops

Ur,obs = (r)obs/robs) - Uobs (6)

With this definition, a negative value af,,simplies the atom is approaching the Sun. The ini-

tial velocity vectoriyps is a sum of two vectors in the orbital plane: the radiglds) and transversal
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(tt.obg) Velocity vectors. We point out that the radial velocity wector is of course parallel to the
radial direction, but its direction depends on the sign efridudial speed. The transversal velocity

vector is obtained from vector subtraction of the radiabeél vector from the full velocity vector:
l7t,obs = 170bs - l_))r,obs- (7)

The unit vectors ops Utobs Of the radial and transversal velocity vectors can be usédrio the
basis of the reference system with the —y plane corresponding to the orbital plane, which will

be specified further in the text.

The heliocentric distanaeof the atom at an arbitrary point on its trajectory is defingd b

r—L (8)

~ 1+ecosd’
wheref is a true anomaly that measures the angular distance betigdimection to the perihelion

and the actual location of the atomraandp is the orbital parameter defined by:

L2
p= oM’ 9)
e > 1 is the eccentricity of the orbit, equal to:
€= p/rperi, (10)
with rpei being the perihelion distance, obtained from:
(GM)? + 2EL2) "~ GM
IMoeri = 2E . (11)

To calculate the velocity vector of the atom in the sourceoreg c at a distance,,c from the
Sun, we must calculate its true anoma@ly: for this distance. In addition, we will need the angle
swept by the atom on its way from the source region to the Ipositionryps for a purpose that
will be explained in the next section. The true anon®ly of the atom afy,sis obtained from its
sine and cosine functions, calculated as follows:

Ur,obs

COSOops = P/Fobs— 1;  SiNOgps = ——— Sin(arccoqCcoSbypy)) - (12)

|Ur,obs|
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1 The true anomaly of the atom in the source rediga is obtained from the solution of Equation 8
. for the hyperbolic orbit for = rc with the prerequisite that the atom is moving toward the Sun,

s 1.e., its radial velocity at, c is negative. Thus,

4 6uc = —arccog(p/ruc — 1) /€] (13)

s and we can calculate the velocity vector of the atom in the inl@e orbital reference frame: its

s z-component is 0, the transversal coordinate from the ceaten of angular momentum is

7 veuic = L/ruc, (14)

s and the radial component from the conservation of energythadrerequisite that the radial
o Velocity is negative

1/2
1 Defining the basis unit vectofs, y, z} for the reference system with tixe- —y plane coplanar

2 Wwith the orbital frame,

13 X = fobscoseobs - at,obssmgobs
14 g = I”\obssmeobs + at,obscos{gobs
A —>
15 z = LJ/L (16)

16 We calculate the components®fc in the reference system in which vectogg,, vons are defined:

7 Uobit = {vruic COSALIc — vrLic SiNBLic, vrLic SiNBLic + v ic COSHyic, O}
18 UxLIC = 17orbit - X
5 R
19 byLic = Uorbit*Y
20 UzLic = 17orbit - Z (17)
21 The velocity vector of the atom in the source regib@ should be inserted into Equation 1.

22 The analytical version of WTPM works in the ecliptic referersystem, and in this case, witk,
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Mobs Uobs defined in this system, no further transformations are rekeltbethe numerical version of
WTPM, with a fully time- and location-dependent ionizati@te, for which the natural reference
plane is the solar equatorial plane, it is convenient toycaut the calculations in heliographic
coordinates. Here, the initial vectors as well as the bulicrey vector of interstellar gas relative to
the Sun must first be transformed into heliographic cootdméhe non-rotating reference system
based on the solar rotation axis as #hexis is the heliocentric inertial reference system; Bualag

(1984)).

In the derivation above as well as in both versions of WTPM, depéed a finite distance to
the source region. In the classical hot model, this distasiset to infinity. If one wants to use
this assumption, the only modification needed in the abormdtae is to make a transition with

ruc — oo. Discussion of this assumption is presented in Section 4.2.

In the current version of WTPM (both analytical and numejiead use the analytic formulae
presented in this section to calculate the velocity vectdhe atom in the source region. In the
previous versions, we tracked the atoms numerically. Nigakexperiments showed, however,
that using the analytic formulae gives more accurate resuid with radiation pressure fiiective
for helium, we do not have to address the complexities relateadiation pressure being variable
with time and depending on radial velocity of the atom. Infillé/ numerical version of WTPM
we still track the atoms numerically (i.e., we seek the folusion for the trajectory of the atom)
to precisely take into account the time, latitude, and sdistance dependence of the ionization
rate, as will be discussed in the next section. The numetriaeking results are used solely for
this latter purpose of calculating the survival probaiaifit Experience showed that because most
of the losses occurred relatively close to the Sun, the slegay in precision of the numerical
solution of the equation of motion does not severely degthd@accuracy of the ionization losses
and the precision-setting parameters in the trajectoggnattion routine can be less stringent, thus

enabling the program to run faster.
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2.2. Calculation of survival probability

Calculation of survival probability is one of the mainfferences between the two strains
of WTPM. In the newly developed analytic version we stricttthare to the assumptions of the
classical hot model: we assume that the ionization ratehsrggally symmetric and fallsfbwith
the square of the solar distance. As shown very early in thedpheric studies (e.g. Fahr 1968;
Axford 1972), the survival probability under these assumptions can be calculated from a simple
formula

w = exp[—ﬁoréAQ/L], (18)

wheref, is the ionization rate at- = 1 AU from the SunL is the angular momentum defined in
Equation 5, and\@ is the angle swept by the atom on its way froim to fops The latter can be
calculated as

A8 = |Bobs— BLicl, (19)

whereb,psis given by Equation 12 an@gl ,c by Equation 13.

In the full numerical version of WTPM, the survival probatyilis calculated numerically by
solving the equation of motion supplemented with an additiderm, which is equal to the time
derivative of the exposure to ionization. The definition gpesure is given by Bzowski et al.
(2013a) in Equation 3, and the formulation of the equatiomotion with the additional term to
calculate the survival probability by Tarnopolski & Bzow$RD09) in Equation 3, where one must
put the radiation pressure facter= 0. Details of the ionization rate used in the analytic versio
of WTPM are presented by Bzowski et al. (2013a) and for the aturmedel of photoionization in
Sokdt & Bzowski (2014); in brief, the local ionization rate is calated for a given time moment
and heliolatitude (i.e., the rate is assumed to be threewsmonal and time-dependent). More

information is provided in Section 5.2.3.

The ionization rate model is organized on a 2D mesh in timelailatitude. The mesh

pitch in time is the Carrington rotation period and in lateul. The total ionization rates (photo-,



10

11

12

13

14

15

16

17

18

19

20

21

22

23

—14 —

charge exchange, and electron rates, separately) aratiadbak a function of time and heliolatitude
and bi-linearly interpolated for the required time and dlafitude. To adjust the obtained rates for
the solar distance, the dependence of individual rates®subsequently folded in. In that way, an
arbitrary evolution of the ionization rate with time, hd#ittude, and distance can be simulated. For
validation and test purposes, the complex behavior of thea&ion rate is simplified to conform

to the assumptions of the classical hot model (Thomas 1978).

2.3. Calculation of the dfferential flux on the sky

The calculation of the local distribution function, dissed in the preceding sections, is uni-
versal for many purposes, including the calculation of tleamants (see Equation 3) and the simu-
lation of the flux observed b\BEX-Lo. Calculation of the latter one, however, is specific beeau

it must take the Galilean transformation between two refegesystems.

We have thdBEX spacecraft located at the radius vedtgy;, moving at a velocityigex
relative to the Sun. The latter velocity is, evidently, a sohthe Earth velocity relative to the
Sun and thdBEX velocity relative to the Earth. We want to calculate th&eatential flux of
ISN He atomsD (v, @), which in the spacecraft-inertial reference system coromfa direction
determined in the spacecraft coordinate system by azimudind elevationr. This flux will
be later used to calculate the flux transmitted through thlerator, i.e., integrated over a solid
angle corresponding to the collimator FOV. Thus, the mostenient coordinates to express the
differential flux are spherical. The velocity vector of the atefative to the spacecraft is defined
as

Urel = —Urel {COSY COSa, SINY COSa, Sinar} (20)

whereu, > 0 is the speed of the atom relative to the spacecraft. Thi®rewst be rotated into

the reference frame in which the atom tracking is perfornned, to the ecliptic reference frame.
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This is done by the transformation:

Ueél =M IBEX—ecl ljreI (21)

r

whereM gex_ecl IS the matrix of transformation from tHBEX coordinates to ecliptic coordinates.
ThelBEX coordinates are defined by the direction of BBEX spin-axis(Ap, ¢p), Which determines
the +z-axis of the spacecraft coordinate system, and the spiled@nhgoint. The transformation
matrix M gex_ecl IS defined as follows:
—CcoSApSingp  SiNdp  COSAp COSPp
Migex—ec = | —sindpsinge —coslp COS@pSiNdp |- (22)
COS¢p 0 Singp

The velocity of this atom relative the Susis given by the formula:

Tops = U5 + Digex. (23)

To calculate the dierential flux® (¢, @, t; 7) in the spherical coordinates we must calculate the

integral:

Umax
d ('ﬁ, a, t; 7?) = f urel]c (r)obs, 17obs(ljrel) ) t; 7?) urze|durel~ (24)

Umin

In this equation we integrate over the relative speed of tbmand the spacecraft, but the dis-
tribution function is calculated for velocit§s calculated from Equation 23 for a given spin-axis
direction andu, ¥, anda. The local distribution function is expressed in the sateriial frame
and defined in Equation 1. The integration t$eetively along a curved path through velocity
space in the solar-inertial reference frame. This path imeée by the fixed viewing direction
anda and speedi,, varying fromupi, t0 Unax in the spacecraft inertial frame. The transformation
from the spacecraft-inertial frame to the solar inertiahfie is done analytically “on the fly” during
the calculations, separately for each atom. This way, ffexieof the velocity transformation on
the diferential flux is taken into account self-consistently anthaiit any simplifications because
we assume in the model that we know the source distributioation in front of the heliosphere

accurately.
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2.3.1. Determination of the integration boundaries

Specifying the integration boundariagi, andunmax in Equation 24 requires some attention.
Formally,umin = 0 andumay = oo. In practice Ui, represents the minimum velocity of an atom that
is able to trigger théBEX-Lo instrument. In the modeling, we determine the integraboundaries
individually for each simulation and each look directi@na) on the sky in a multi-tier refinement

process.

In the first step, the boundaries are determined approxiyndtee lower boundary is assessed
starting from the realization that the slowest atom expkit¢he solar system &, from the Sun
follows a parabolic trajectory. Thus, its total energy ie golar-inertial frame is 0 and its speed
relative to the Sun at,ps is given by(2GM/rq,9Y?. However, the direction of motion of this atom
relative to the Sun is unknown; we only know its direction ajftian relative to the movingBEX
spacecraft. In practice, ISN He atoms with the lowest pés®bergy are still well above the
IBEX-Lo energy threshold during the spring observations. Heneduring fall observations and
for the wing of the Warm Breeze this threshold becomes impo(téubiak et al. 2014; Galli et al.
2015; Sokt et al. 2015).

To determineun,, we start by looking for the velocity vector of the atom in #$gacecraft
frameVs© = Vgc{ug‘;, V3 UZCZ}, whereV;° is the speed for which we are searching, afjcare the
directional coordinates of the atom velocity in the spaaftdrame that we know. We should solve

the following equation:

VSe = VO — V2. (25)
Ve, = {VSCX, vgcy,vggz} is the velocity vector of the spacecraft relative to the Salhquantities

known), ano\7§ = Ve {vgx, vgy, vgz} Is the velocity vector of the atom relative to the Sun, forethi

we know onlyV¢. It means that we should solve Equation 25 in the followingrfo

VSC{UZCX, e vsc} = {VO V2 Vs®cz} -V? {UO © 02 } (26)

a ay’ ~az SGX» " SCy? ax» ay’ “az
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with an additional condition:

\/vgxz + vgyz + vgzz =1 (27)

to getV;° (the speed of the atom with respect to the spacecraft). Theula resulting from

Equation 26 for the speed of the atom with respect to the spaités the following:

V3% = 0350sex + Vi Vecy + VagVecz + \/ (vgg(v?cx + 3 veey + USS quz)z + Vo2 - (V§CX2 + VgCyZ + VéDCZZ)
(28)

From Equation 28 we obtain two solutions #§° (positive and negative) and we take the positive

one. We finish by taking the larger from the value thus obthemed the speed resulting from the

pre-requisite energy sensitivity threshold.

To set the upper boundany,., We require that the simulation does not miss more than
of the total population in front of the heliopause. In othards, we are potentially interested in
atoms whose speed in the reference frame of the intersggltais inside a rang@, U;,) obtained

from the condition:

Uiim
1-A,= f dQ f v*fuc (v, ) do, (29)
sphere 0

wherev is the speed of the atom in the gas frame and its direction of motion in this ref-
erence system. For interstellar gas movinggtelative to the Sun, the maximum allowable
speed of an atom at infinity is&s + Ujim, and atryys (from the conservation of energylim =
((vB + U”m)2 + 2G M/robs)l/z. In practice, we requird, = 10°° for a Maxwellian distribution
function, which results in a speed of the fastest atoms &tAU of ~ 62 km s* relative to the
Sun. Since, similarly as for the lower boundary, only theesbeelative to the Sun is known, and
the direction is not, we repeat the procedure describedfgrto determine the maximum speed

relative tolBEX for a given directiorn(y, a).

With the integration boundaries in the spacecraft framtatesely determined, we refine them

to reduce the calculation load. We profit from the fact thatititegrand function in Equation 24
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features a single maximum iR and is expected to asymptotically go to O at least at the high e
of its domain. Therefore we seek to further constrain thegration boundaries. We tabulate the
integrand function from Equation 24 betwegf, andumaxin 34 equally spaced mesh points (with
the step in relative speed equaldig) and we calculate the first estimate of the integral defined in
Equation 24. Subsequently, we test for the contributionadiidual mesh points to the integral,
going from the boundaries inward to the integration rangtlaaking for the range for the mesh
points inside which the relative contribution to the intggxceeds + 0.001. Having found these
boundary points, we extend the range dayeach way for safety (however, making sure we do
not exceed the original boundariagi,, Unax determined above) and we end up with the refined

integration boundari€@imin 1, Unax1)-

Further integration fromum,1 t0 Unax1 IS done using the trapezoidal rule, with the séep
halved in each iteration until the integral varies by lesstB001 in aWTPM and 1¢ in nWTPM
from one iteration to the following one. This procedure igsgated for each direction on the sky

for which we wish to calculate thefiierential flux.

In a typical case of parameteff ISN He gas, integration over the full speed range with a
relative accuracy of 001 requires just one subdivision of the original meshyin Thus, a typical
step in the integration over speedsis=~ 0.3 km s1. In some cases, the number of subdivisions
increases to 3 or 4. This happens mostly when the visibleakigrclose to the boundary of the
FOV. An illustration of the integrand function for integi@ over speed and of the operation of

the boundary and step selection logic is illustrated in FadL
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Sampling of distribution function of speed
orbit 64, spin angle = 264, i, =1

umln
Umax

) ) 6 0 g 0 00 00 0.0 00
75 80 85 90
speed [km/s] (SC frame)

Sampling of distribution function of speed
orbit 68, spin angle = 228, i,=2

6‘5 7b 00000 ;5 ooooooo 85 oooooo
speed [km/s] (SC frame)
Fig. 1.— lllustration of the integration boundary settimgdantegration step selection for two ex-

ample cases of fferential flux. Shown are the integrand functions in Equa®iéiior one selected
look direction for orbits 64 (upper panel) and 68 (lower gaae a function of atom speed in the
spacecraft frame. The vertical bars represent the firssgoethe integration boundaries, obtained
from the application of Equation 28 to calculaig,, Umax. Gray dots represent the first division

of the integration interval. The original integration regiis subsequently narrowed to the region
(Umin1, Umax1), occupied by the black dots. Blue dots represent a subdivisimne step further

(i, = 1). This subdivision was dficient to achieve the desired accuracy in the upper panel, but
the lower panel required one more subdivision step, reptedeéy cyan dot§i, = 2). The lower
panel exemplifies a case where the integrand function isf€att dhe lower boundary due to the
parabolic speed limit, even though the function value atleundary is not negligible. This is due

to physical reasons, i.e., we reject atoms at ellipticaitsrb
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2.4. Integration of the flux over the collimator

Integration of the dferential flux over the collimator results in a flé(Ap, ¢p, ¥, t; 7) (S€E

Equation 4). The definition of the collimator-averaged flsixhie following:

[ oW 0 tDT (w)dQ

F (e, ¢p, 01, 1, ) = — To® (30)

FOV

wherey is the spin-angle of the collimator axig, is the direction around the collimator axis,
parameterized by the angle from the collimator axéd the anti-clockwise angle around the axis
¢. T(w) is the attenuation of the incoming atom flux as a functiorhefdeviation of its direction

from the boresight direction, andXs the solid angle dierential.

Equation 30 is a general formula. Its implementation in tbeecis diferent in the two ver-
sions of the program. It will be presented after the presemaf the adopted collimator transmis-

sion function, which follows.

2.4.1. Collimator transmission function

The IBEX-Lo collimator is composed of three quadrants: one higloitg®n and three low-
resolution (see Figure 3 in Fuselier et al. (2009)). In the-tesolution observation mode, all four
guadrants are active, while in the high-resolution modg tivé high-resolution quadrant is active.
The quadrants are built up as a hexagonal mesh so that the FQ¥yiv@n quadrant is hexagonal in
shape. Linear dimensions of the low-resolution quadram@sdentical, similar to the orientation
of the hexagonal grids. Thus the transmission function@three low-resolution quadrants are

identical.

Effectively, the transmission function is given by the formula

T (0, ¢) = 3Siow Tiow (0> ¢) + ShighThigh (0, 9), (32)
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whereT,q, is the transmission function of the low-resolution quatlrandTpgy is the transmission
function of the high-resolution quadrant. The flagentsS,,, andSyg, reflect the &ective areas
of the apertures of individual quadransSj,,, = 0.688, which reflects the percentage of the total
geometric area not obscured by the grid wires 8pgh = 3/4x 0.617, reflecting the smaller radial
size of the high-resolution quadrant and the higher obsicurdecause of the finer mesh (Fuselier
et al. 2009). The anglgsandg are the angular distance from the boresight and the azinmgfle a

in the collimator FOV, respectively.

The collimator transmission was investigated before laufiselier et al. 2009, see Fig-
ures 11 and 12) and is availabléhattp: //ibex.swri.edu/ibexpublicdata/Data Release 6/.
The numerical values for the transmission are given for bajh- and low-resolution portions of
the collimator for the radial lines connecting the boresigith the corner and the center of a side
of the hexagonal collimator FOV. In our model, we approxiatathe transmission function by
analytic formulae developed from simple geometric comnsitiens based on the design of the col-
limator (see Fuselier et al. (2009), Figure &y nigh (0, ¢) = T(C|ow,high tan(p), |¢|), WhereCiow high
are codicients equal to the ratio of the height of the collimator ktaxthe length of the edge
of the hexagonal mesh. These ratios are known from the aiincalibration:cy, = 1347,
Chigh = 27.41. The angl& = ¢ — @comes Wheregeomeris the azimuth angle of the closest corner of

the hexagonal mesh. The functiof, p) is given by the formula:

9 - 2( V3sing + 3 cosp) x + 2 sing (V3 cosp — sing) X2 if X< X

_ 1
7(x®) = 51 12— 12cospx + (1 +2c0s ) ¥* if Xxo<Xx<x (32)
0 if X> Xe
where:

_ 3

X = 3 cosp- V3sing
_ 6

Xe = 3 cosp+ V3sing

A plot of the transmission function is presented in Figure/Rile the orientation of the FOV in the

IBEX reference system (i.e., the orientation relative to themsicey direction) is shown in Figure 3
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in Bzowski et al. (2012).

2.4.2. Integration over the collimator in the analytic viers

Integration of the ISN He flux over the collimator transmigsfunction in the analytic version
of the model is performed iteratively. The collimator FOMisided into equal-area pixels accord-
ing to the HealPix tessellation scheme with= 3, N, = 4 (Gorski et al. 2005). In this scheme, the
sphere is divided into two symmetrical polar caps and antegahband. The division between
the polar cap and equatorial band areas is such that thais &elid angles) are identical. In our
application, only the polar cap is relevant because ittulditial range exceeds the angular radius
of the collimator FOV. The polar cap is further split into fadentical (and thus equal-area) lobes,
which all meet at the pole. These lobes can be regarded aspnegis, which are further split into
identical quadrants, i.e., smaller pixels. The subdivisican further go as fine as needed. The
centers of the pixels are located on rings that are paratiallircles on the sphere.fiéctively,

for Nsige — 1 subdivisions, the whole sphere is covered vl = 12N? , identical diamond-like

side
pixels andNsige is referred to as the tessellation number. Necessarilgrie of a pixel in a given
tessellation is equal taQy = 4n/ (12N§ide) and the sequence of tessellations follows the simple

rUle Nside: 2k, k = 0, 1, . e en

In the approach used in the analytic version of WTPM, we firsttpe collimator boresight
in the north pole of the sphere and select the pixels thatfithe hexagonal FOV (see the red
hexagon in Figure 3). Thus, for a given tessellation number,have a fixed numbeX;, of
pixels that represents the collimator FOV. The transmis$aatorsT (o, ) are pre-calculated for
each pixel in all relevant tessellations and stored for amtessellation a&;, i € {1,..., Nyx}. The
coordinates of the pixel centers are stored as Cartesiamegtdrs in a selected coordinate system.
In aWTPM it is the ecliptic system, but in principle it can beyanther system, e.g., heliographic

or equatorial. To calculate the collimator transmissiamction for spin-axis pointingap, ¢p) and
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Collimator transmission function
\ ‘ ‘ ‘ \ ‘ ‘ ‘ \ ‘

(

0 2 4 6 8
angular distance p from the collimator axis

Fig. 2.— Collimator transmission as a function of angulatatsep from the boresight for the

high-resolution (orange) and low-resolution quadrantggpand the total transmission function
obtained from Equation 31 (green). The solid lines corradpo the transmission along a line
connecting the boresight with a corner of the field of view<0°) and the broken lines to the line

connecting the boresight with the centers of the siges 80°).
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spin-angley, which corresponds to the ecliptic longitudg and latitudeg,, the centers of the

pixels of the collimator FOV are rotated using the followingnsformation:

sing sind, — cosé cosy, sing,  COSE sind, + CoSAy, Siné sing,,  CosA, COSp,
Mcal =| —cosa, siné — cosésind, sing, sinésinA, sing, — cosécosl, cosg,sind, |

COS¢ COSoy, — COS¢y, Siné sing,
(33)

where¢ = 15° is the inclination angle of the hexagonal FOV to the center bf the visibility strip
on the sky. This gives the coordinates of the pixels for tHected spin-axis pointing and spin-
angle (see the cyan hexagon in Figure 3). We denote the listest positions as; = (¥i, @),
i € {1, e, Npix}. They make a list of directions for which we will calculatesttifferential flux

@ (w, t; 7), defined in Equation 24, to be averaged over the collimatdr. FO

With the virtual collimator appropriately positioned oretsky, we calculate an approximation
to the collimator-averaged fluk™s¢d (1p, ¢p, ¥, t; 7) based on Equation 30 using the following
sum:

Npix
Fd (Ap, go, y, t; 71) = ==

Ti® (v, Q, t; 7)
Npix '

Zi:]_ Ti

Starting from tessellatioNsiqe = 2%, we iterate calculating s, increasingk by one (thus fec-

(34)

tively quadrupling the total number of pixels), unEf?Nsee /F(Nsied _ 1] < 0.01: when this condition
is fulfilled, we consider the collimator-averaged flux ascassfully converged and adopt the result

asF (/lp, op, U, 1; ﬁ')) — F(Nside)

Examples of the collimator transmission functibnthe diferential fluxd, and their products
®T are shown in Figure 15 for three example orbits: 61 (i.e oteethe yearly peak of the ISN He
signal observed biBEX), 64 (the peak orbit), and 68 (well after the peak).
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Fig. 3.— lllustration of positioning of the virtual collinbar in the calculations done using the
analytic version of WTPM. The hexagonal aperture is first negjggn the HealPix grid at the north
ecliptic pole (red hexagon, actually composed of dots spawading to the centers of individual
pixels). Then the orientation of the sky strip scanned orvargorbit is selected by defining the
spin axis coordinateSlp, ¢p) in the selected celestial coordinate frame (here the elipéntered
at IBEX With this, the collimator boresight scans the great cjrslampling the sky at the points
marked by the large blue dots. The blue solid circles reptebe boundaries of the scanned strip.
With the transmission function tabulated for the angulasrdmates of the red dots, the virtual
collimator is then rotated to one of its working positionspiresented by spin-anglealong the
scanned strip, which corresponds to the ecliptic (longfudtitude)= (/L/,,m)- The rotation is
effected by the transformatiov .., defined in Equation 33. The collimator aperture in one of
the working positions is marked by the cyan hexagon, whiatoieposed of tessellation points

actually used in the simulations.
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2.4.3. Integration over the collimator in the numerical sien

Integration of the ISN He flux over the collimator transmissfunction in the numerical ver-
sion of WTPM is carried out in a totally flferent way. First, the éierential flux® (¢, Q,t; 7),
given by Equation 24, is tabulated within the whole vistibtrip of the sky for a given timeand
spin-axis orientatiofflp, ¢p). The tabulation is done on a regular mesh in the heliogragyheri-
cal coordinates, with constant pitch in each coordinata,timo-step process. First, thefeérential
flux @ is calculated from Equation 24 with a pitch a7031285 in each coordinate. Then, the mesh
is further subdivided using bi-cubic interpolation so ttie flux is tabulated with a constant pitch
of 0.703125/4 = 0.17578125, and its coordinates are converted to the spacecraft cuied
(spin-angle and elevation). Now, the virtual collimatordmght is put to a spin-anglg and the
differential flux points within the angular radius of the collboraFOV are selected. Subsequently,
the coordinates of the tabulatedfdrential flux are converted to the collimator coordingies).
The collimator coordinates make a spherical referencesysuith the north pole corresponding
to the collimator boresight at the spacecraft coordingte8). With this, integration over the col-

limator FOV begins, starting from the general formula fdegration in the spherical coordinates:
[ ©W.p.0.t;7) T (p. ) sinpdode

FOv
[ T (p. ¢) sinpdpde
FOv

F(NSidE) (/1p, op, (ﬂ, t; ) = (35)

The integration is done numerically.

The collimator FOV is split into equal-area pixels definedhe collimator coordinates. Note
that these pixels have nothing to do with the HealPix pixéswuksed in the former section. The
collimator aperture is first divided in radial distance itw@ parts, with division ap’ =~ 4.5°. The
inner part is then subdivided infap, Ap) sectors, withhp = 7.5°. In the radial direction, the mesh
boundaries are defined so that pps 1 - r'—1 (1 - cosR), whereR = 9.0° is the maximum angular
radius of the aperture. For the regionpat- 4.5°, Ap = 3.75° and cop; = 1 - %‘ (1 - cosR),

with igng = 20. The exact value fgy is calculated from the equation ggs= 1 — %(1 — COsR),
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wherei’ is the lowest value off, for which cog’ > cos45°. All pixels have equal areas, equal to

S = Ag(cosp; — cospi,1) (7/180).

The contribution from one sectorof the virtual collimator is calculated as

N Al
Fsn = ; Q (i, o) T (oispi); Tsn= ; T (oi, ¢1), (36)

whereN; is the number of flux points that are inside the collimatot@e o, ¢;) are collimator co-
ordinates of théth flux point, T is the collimator transmission function defined in EquaBdanand
@ (pi, ) is the diferential flux of ISN He defined in Equation 24 and calculatedte coordinates

corresponding to the collimator coordinates ¢;).

The full collimator-averaged fluk is calculated as

F Yoet Fsn
Zr’:‘:l TS,n

In the case that the regular sector exceeds the hexagomaleper of the aperture, it enters the

(37)

calculation with a weighk/n, wherek is the number of dierential flux elements that belong to

the portion of the sector that is inside the aperture.

The method of calculating the collimator-integrated fluxhe numerical version of WTPM
may seem much more complex than the method used in the anadysion regarding the calcula-
tion over the collimator FOV. However, this method works fimiéhin the computation framework
implemented on a computer cluster. Calculating tHeedential flux is the most computationally
demanding portion of the entire simulation task and thugnable performing parameter fitting
in a reasonable time, must be parallelized. To maintainnoaldetween the developmeritast
and the calculation time, the most practical way turned ouid organizing the calculations of
the diferential flux by separate instances of the program, launichgebarate cluster cores. This,
however, hampers cross-talk between results of calcaksid individual diferential flux values,
so it is practical to tabulate theftirential flux for a given time moment andf@irent directions

on the sky. If the tabulation is not ficiently dense, it can be refined by interpolation, computa-
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tionally much less demanding. A benefit of such an orgarupadf calculations is that with the
differential flux tabulated for the wholBEX-Lo visibility strip one can select the boresight of
the collimator arbitrarily without too much of additionafert, which facilitates an fécient cal-
culation of the flux averaged over spin-angle bins. Thitadtep is the subject of the following

section.

We have verified that the methods described in the presenpeswbding sections return

results that agree within 1% for identical parameters anzaion models.

2.5. Integration of the flux over the spin-angle bins

As shown, e.g., by Bzowski et al. (2012, Figures 7 and 8), tpeatifrom the ISN He gas
is expected to be close to a Gaussian function as a functigpinfangle. Since our simulations
must reproduce the signal averaged avgr= 6° spin angle bins, the curvature of the collimator-
averaged flu¥ (i), defined in Equation 35, must be appropriately taken intoact This should
be done by taking average values over théis:

Yr+Ay /2

(F W)y = f F () du /A (38)
Yk—Ay /2

whereyy is the spin-angle of the center of tkih bin.

For the pixels wherd () is almost linear, simply taking the middle value for the biaym
be suficient. However, the width of the signal is just a felins, and in practice, the curvature
of the signal inside the bins does play a role, varying frofitdo orbit and from bin to bin. We
analyzed the behavior of the simulated signal by compamsglts of the numerical integration
of the signal tabulated every8lof a degree and integrated ovérlns using the trapezoidal rule
with results of integration by polynomial quadratures afi@as orders on much less dense mesh.

We found that maintaining a 1% accuracy requires tabuldtiadlux every 15° in spin-angle and
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approximating the signal within a bin by a polynomial of tlerfth order. This polynomial is then

analytically integrated within the boundaries of a given, bvhich results in a quadrature.

The formula for the signal averaged over alBn in spin-angle(F),, is the well-known
Boole’s rule:

(F)ay = (TF1 + 32F, + 12F3 + 32F, + 7Fs) /90 (39)

whereF; is the collimator-averaged flux simulated for the centerhef bin and the othe; are
the flux simulated for the consecutive points inside the gjraced by B° of spin-angle.F; and
Fs correspond to the boundaries of the bin and thus can be re@ugkd calculation of the bin-

averaged flux in the neighboring bins. This formula is useolith versions of WTPM.

2.6. Integration of the flux over good time intervals

Similarly as in the case of the integration over the bins,ithegration over the good time
intervals is carried out using quadratures. We found thiiiceently accurate results are obtained
when one tabulates the collimator- and bin-integrated flith & 0.5 day pitch over the High
Altitude Science Operations (HASO) interval and uses thetfoorder polynomial quadrature. An
important diterence in comparison with integrating over spin-angle,dw@#; is in the integration
boundaries: good time intervals vary from season to seaswidit to orbit. Thus, one needs to
calculate the ca@cients of the approximating polynomials to obtain indeénittegrals and then
to evaluate them in the boundaries defined by the bounddresual good time intervals. Thus,
there is no prerequisite that the integration boundariegotm with the boundary points of the

quadrature.

DenotingF;, the collimator- and spin bin-integrated flux for a tithewe take five equidistant
time stepg;, ..., ts, with 6t = t;,; —t; = 0.5 day (the time for this calculation is converted into days

since the beginning of a given orbit) and calculgtg F+,, F,, Fy,, Fi,. With them, we define the
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polynomial P(t) approximating the flux for the time intervél, ts) as

Pt =At'+B+Ct?+Dt+ E (40)

s and we calculate the ciients from the following formulae:

5

10

11

12

13

14

15

A = Fy —4F, +6F, —4F, + Fy
= 2(6t(—=Fy + 2F, — 2F, + Fy) — 2(Fy, — 4F, + 6F, — 4Fy, + F) o)
C = 6t2(-Fy + 16F,, — 30F, + 16F, — Fy,) + t3 (66t (Fy, — 2F, + 2Fy, + Fy) +
+ (6F, — 24F, + 36F, — 24F, + 6F,)t3)
D = ot°(2F, - 16F;, + 16F, — 2F;,) + t3 (6t (2F,, — 32F;, + 60F, — 32F, + 2Fy,) +
+13 (6t (—6Fy, + 12F, — 12F, + 6F ) + (—4F,, + 16F, — 24F, + 16F,, — 4F)t3))

E = 245t*F, +1t3 (6t3 (—2F, + 16F, — 16F, + 2F) + t3 (6t2 (-Fy, + 16F;, — 30F, + 16F;, — Fy,) +

+t3 (0t (2Fy, — 4Fy, + 4Fy, — 2Fy) + (Fy, — 4Fy, + 6F, — 4Fy, + Fy) 1)) .
(41)
With the codficients calculated, we can integrate Equation 40 over tif@jiming an indefi-
nite integral in the form of a polynomial of the fifth order,casubstitute for time the integration

boundariedcry), teT2i Of theith good time interval for a given orbit. These are denotethas,

lgT2i:
letii = (tot1(E +ter1(D/2 +te11(C/3 + ter1(B/4 + (AtgT1) /5))))) (42)
ler2i = (tor2(E +ter2(D/2 + te12(C/3 + ter2(B/4 + (Algt2) /5)))))
and finally the flux integrated over the good time inteiviakes the form:
(Fyori = (loai — lorwi) / (240t). (43)

If the initial tabulation does not cover the whole orbit, tiéssing interval is covered with
another set of five equidistant times, starting from the ijprevtimets, and the procedure described
by Equations 41 through 43 continues. Ultimately, we haedlihx integrated over all; intervals

of good times for a given orbit and we calculate the flux avedagver spin-angle bik and all
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good times from the formula:

S (Fer
Y (tetai — toTwi)

Tabulating the bin-averaged flux with a 0.5 day step implrest the orbital arc is at least 2.5

(F (Ap, dp, ¥ii; W) ay.cT = (44)

days long. In a few cases when the HASO time for an orbit wasteshave use the three-point

guadrature, with approximating a polynomial of second orde

Numerical experiments showed that using this complex seliemeeded when one accounts
for the spacecraft motion relative to the Earth, as is disedisn detail in Section 5. The relevant

effects are presented in Figure 13.

Equation 44 gives the collimator-, spin-angle-, and gaotes- averaged flux in physical
units. To compare this flux with observations, we must resitab that it represents the collimator-
, Spin-angle-, and good-times-averaged count rate inichal bins for a given orbit. This proce-
dure is presented in the following section, with no need ferr® the absolute calibration of the

instrument.

2.7. Rescaling the averaged flux from physical units to counate

In the absence of background, the count Gtéor a given spin-angle bik, averaged over
good time intervals for a given orbit, is directly proportad to the time-, spin-angle-, and collimator-
averaged flwE, = (F (1p, ¢p, Yi; 7)) ay,cT from Equation 44, calculated for a parametersethe
proportionality coficienta is constant for a given observation season. It depends aiiglet the
instrument setting and sensitivity, and on the energy oftoens, which depends on the adopted
parameter set. Given the simulated flux values calculated from Equatiomdd observed count

ratesc, k = {1, ..., Ngata, WhereNyqais the total number of 6bins taken for the analysis from all
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orbits for a given observation season, we finoly analytical minimization of?:

Ndata Ndata

/\/2 (a) = Z Z (aFi - Ci) (aFj - Cj)wij. (45)

=1 i=1
In this equationw;; is the element of a matri¥/ being the inverse covariance matrix for the data
(for details see Swaczyna et al. (2015), this volume). Hqoa5 is a simple quadratic function of
a. Thus, it takes the minimum value farequal to:

3o 3 Nosay (Fic o+ F-ci)

a= Z Ndata Z Ndfta w” ’ (46)

which we adopt as the scaling factor to convert the simuléitedto the observed count rate.

Basically, scaling the simulated flux to the observed cout® isa portion of searching for an
optimum parameter s@t We describe it here because it must be done before the sedulax
can be compared with the data and because it can be donei@adlyin contrast to searching for

the values of the parametet®f the assumed distribution function.

2.8. Outlook and summary of model description

Two potentially significant #ects are currently left out of the model. One of them is the
possible sensitivity of the registered count rate due toetergy of the helium atom impacting
the conversion surface and the distribution of the spudtpreducts, as the He is not observed
directly by IBEX-Lo (Wurz et al. 2008). The other is a small perturbation &f #ftom trajectories
by the Earth’s gravity. Both of them are the subject of rede&@alli et al. 2015; Kucharek et al.
2015, this issue, respectively). The first one is approxahan the present version of our model
by adopting a sharp threshold in the low boundary of intégmatver speed (see the discussion by
Solkot et al. 2015), the other one was shown by Kucharek et al. 5Rftilbe potentially important
mostly during fall seasons of ISN observations when the atopact energy is so low that they
are not visible folBEX-Lo anyway (Galli et al. 2015). Including them in WTPM is pdssiand

will be done if it is proved that it is needed.
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Table 1 summarizes the description of the analytic and nigadarersions of the WTPM. The
similarities and dterences are gathered by the elements of the model to sinth&at&N gas in
the heliosphere. Most of the parts are general with apphicéd any detectiofobservation scheme
and some have special applicationlBEX (see more in Bzowski et al. (2015); Swaczyna et al.

(2015)).
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Table 1: Comparison resume of aWTPM and nWTPM

aWTPM

nWTPM

Code language

Wolfram Research

Mathematica

Fortran andC

Adopted model

of gas

classical hot model

hot model with variable ionization

Distribution func-

tion in the LIC

Single Maxwell-Boltzmann distribution, but any other candasily

adopted

lonization

photoionizatior+ charge exchang
+ electrons, at the time of detectio
for the ecliptic plane, with instanta
neous values for the calculation m
ment, Jr?, available via Data Re

lease 9

e photoionization+ charge exchange
n;+ electrons, for the current posi-
I-tion at the atom’s trajectory (time,
pdistance, latitude), variable in time;

- other models can be applied

Detector position

Exact IBEX spin-axis, location
(Schwadron et al. 2015; Swaczyn

incorporated

in space, velocity, and position

a et al. 2015); any other eaabily

Initial conditions
for atom orbit
calculation set in

the SC frame

The state vector in the LIC was ca
culated analytically, and the resu

was used to obtain both the distrib

I-The state vector in the LIC was
lcalculated analytically, and the re-

usult was used to obtain value of

tion function value and the survivalthe distribution function in the LIC;

probability

survival probability was calculated
from numerical atom tracking in the
space- and time-variable ionization

environment

Stop distance for

atom tracking

Fixed, currently set to 150 AU; ca

use anything up to infinity

nFixed, currently set to 150 AU for
the Maxwell-Boltzmann term; stop
when 150 AU is slightly exceeded
for the survival probability calcula-

tions; tested up te 5000 AU
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Table 2: Table 1, continued.

aWTPM

NWTPM

Differential flux

calculations

Integrated in the SC reference frame; integration bourddor atom

speed are selected individually for each direction on tlyeasid calcu-

late iteratively using the trapezoidal rule; boundariessalected so that

(1) only hyperbolic orbits are allowed and (&) = 10°° of the atoms

in the LIC are potentially excluded-(4.50 included); can implement a

finite energy sensitivity threshold

Absolute scaling

Calculations done in physical units

Collimator re-

sponse function

Analytical function based on the p

re-flight calibration (fatjon 31 and

Figure 2); other functions can be applied

Integration over

collimator

Signal integration for a given orbi

, Entire visibility strip for a given or-

time moment, and spin-angle of theit and time moment first tabulated

collimator boresight, using HealPi
tessellation, iterated with increa
ingly fine resolution until conver
gence; diferential flux for each
HealPix pixel was calculated “o

the fly” (Section 2.4.2)

xat a fixed grid in the heliographic
sspherical coordinates, subsequently
- interpolated to a finer mesh using a
bi-quadratic interpolation; this map
nis subsequently integrated for each
desired spin-angle pointing of the
collimator, using a dferent scheme

than in aWTPM (Section 2.4.3)

Calculation of

flux for 6° bin

Calculation by Boole’s rule with sampling with a5t step (Equations 38

and 39); any other scheme can be easily applied

Sampling in time

Central HASO time per orbit, butIntegration over good times using

any other can be applied at a cost
an increase of computational tim
any time integration scheme can

applied

a polynomial method (Equations 40
ethrough 44); any time integration

becheme can be applied
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Table 3: Table 1, continued.

aWTPM

NWTPM

Signal assembly

The collimator integrated flux i

5 The collimator integrated flux is

sequence calculated individually for any se- calculated in series for selected
lected spin-angle. spin-angles
(1) Integrate over speed (1) Integrate over speed, tabu-
late diferential flux over visibil-
ity strip, and interpolate to a finer
mesh
(2) Integrate over collimator (2) Tabulate collimator-integrated
flux at a fixed spin-angle grid.
(3) Calculate spin-angle inte-(3) Calculate spin-angle inte-
grated flux using quadrature grated flux using quadrature.
Scheme used by Sok et al.| (4) Integrate (3) over good time
(2015) intervals using quadratures
Scheme used by Bzowski et al.
(2015).
Main applica-| Tests and general studies ©Fit of the ISN parameters; other
tion ISN He. Dedicated to calcula-species like H, Ne, O, D can

tions on a personal computer.

be easily calculated; dedicated to
huge serial calculations on a clus-

ter

Contact author

J. M. Solot (jsokol@cbk.waw.pl)

M. A. Kubiak
biak@cbk.waw.pl)

(mku-
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3. Cross-validation of the two versions of WTPM

The two versions of the WTPM, presented in Section 2, are naetstd based on the same
main approach to atom tracking. Theytdr in implementation (@WTPM iMathematica, "\WTPM
in Fortran/C), reproduction of the FOV of the collimator, the ability ofatailed reproduction
of the ionization losses in the heliosphere, and averadiagsignal over good times. Since the
aWTPM is dedicated to testing and investigating variofisots in the ISN He modeling, it uses
a simplified ionization model (the ionization rate is fixedtime and its value selected for the
time of detection, changing with solar distance #s’)L This simplification is used to keep the
time of computation reasonably short. Currently this verssonot used to average the signal over
time, but this function is easy to add if needed. In the num@fTPM the ionization losses are
implemented in a more sophisticated way: with the latitatldependence of the photoionization,
charge exchange reactions, and electron impact as welkadistic heliocentric distance-variation
of the electron impact ionization taken into account. Theigal probability is calculated with all
variations of the ionization rate in time taken into accdmnhumerical integration. The advantage
of the numeric WTPM is that the user can code ionization in artgbkle way and in further parts
of the paper we show how various assumptions about ionizédsses in the heliospheré&ect the

modeling of the ISN He flux.

The goal for both versions of the code was to achieve an agmeeto at least 1% in the
collimator- and spin-angle bin-averaged flux for the two e®dun for an identical ionization
model, i.e., with the numerical version of WTPM degraded te simplified assumptions of
aWTPM. The goal of a 1% agreement, and thus cross-validaivas, pursued at all levels in
the calculation, starting from the state vectors of the atonthe source region, through determi-
nation of the integration boundaries and calculating tiiedintial flux on the sky (Equation 24),
flux averaged over the collimator FOV (Equation 30), to the fweraged over spin-angle bins

(Equation 38). In the following, we show that this goal hasrbaccomplished.
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Figure 4 presents a comparison of the calculation of ISN Hedhne by the analytic and
numeric versions of WTPM independently with the same assompbout ionization losses (ion-
ization for the time of detection changing with solar distams 1r?). As it is presented in the
figure, both codes yield practically identical results hwan accuracy on average of better than 1%
for the full range of spin-angles. In the range of the primi&M He, the best accuracy is for orbit
64 (up to 04%); for the orbits well before and after the peak orbit theuaacy drops to 8%. The
largest discrepancies are for the so-called wings of threguy flux and they reach abou®¥% for
orbit 68 for the worst pixels. For the spin-angles where tine 8 extremely weak, like spin-angles

from 20 — 150, the accuracy is high (8%).

The systematic diierences between results of the two codes visible in Figure 4vall un-
derstood and can be eliminated if needed, but at a very highlasion cost. The small systematic
underestimation of the total flux by nWTPM, manifested by an &MINWTPM ratio between
1.002 and 1004 in the left-hand portion of Figure 4 exists because thaarical atom tracking
for the calculation of survival probability in nWTPM typidglovershoots the tracking distance
limit. Since far away from the Sun the atom tracking proceduakes large steps, in practice the
actual stop distance exceeds the limitbyl0 AU, which results in a small overestimate of the
ionization loss compared to the losses calculated withtihe distance equal 150 AU, adopted in
aWTPM. This dfect can be eliminated by forcing the stop conditions in NWTRMich would
be at a calculation cost that is not justified by the accuratyaecement. The wavy behavior in
the right-hand side of Figure 4 is due to the limit imposedtanresolution of integration over the
collimator transmission function in aWTPM. We have verifigdttincreasing the resolution limit
eliminates most of these systematic features. Since isicrgdhe resolution by one step in the
HealPix system requires a four-fold increase in the numbpoimts within the FOV to calculate,
it also increases the total calculation time. We decidedtanctrease the accuracy of integration
over the collimator FOV in aWTPM since it is not used for datiniif, and the accuracy obtained

is inside the declared 1% of model uncertainty. Since thdlsystematic diferences between the
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Comparison of analytic vs numeric WTPM
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Fig. 4.— Ratio of analytic to numeric WTPM simulations of thélISle flux, averaged over spin-
angle bins and calculated with the simplified assumptiorheridnization losses (ionization at the
time of detection with 1r? dependence on solar distance)ffBient colors mark dierent orbits,
indicated by the numbers in the plot. The vertical lines ntagkspin-angle range for the data used
in the analysis of ISN He by Swaczyna et al. (2015) and Bzowski.€2015). The ISN He peak

is close to spin-angle 264.
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two models are well understood, we decided to not strive fiogxtra boost in agreement, which

clearly could be obtained, but at the cost of a prohibitiveéase in the calculation time.

4. Discussion of magnitude of various detailsféecting the ISN He modeling

In this section we present cross-validation of the two sgaf WTPM, show substantiation
for the algorithms and numerical solutions used in WTPM arsdwBs the significance of some
effects and the related uncertainties taken into account imtdeling of ISN He gas. We illustrate
results for three orbits for the 2010 observation season(tl&lfirst orbit taken into account in
the ISN He gas analysis by Bzowski et al. (2012)), 64 (the anbithich the maximum flux was
observed), and 68 (an orbit that is challenging for modddacause the collimator is just skimming
the ISN He beam and a significant contribution from ISN H isextpd). When appropriate,
we show results for selected individual IBins centered at spin-angle of 248vhich typically is
located at a far wing of the signal, 264wvhich is at the peak of the signal, and 27@hich is
approximately in the middle of the slope of the signal at thpasite side of the maximum (see the
purple dots in Figure 9). In doing so, we cover most of thedgpbeam versus collimator FOV
boresight geometries and the full range of energies of hrmsitelative to the spacecraft, common
for the modeling of the primary ISN He population. This iseintled to show that WTPM is able
to cope with all those situations while maintaining a numedrprecision o~ 1%, which is better

than the uncertainties in the data (see Swaczyna et al. #tiggssue).

In the following subsections, we show the results from thadit version of WTPM except
for the subsections where we preseffi¢ets of time and heliolatitude dependence of the ionization
rate on the simulated flux (Section 5.2.3) and high-resmhusampling of data for investigation of
spin-angle averaging (Section 4.3), for which the resutismfthe numeric version of WTPM are

presented.
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4.1. Hfect of spin-axis pointing in or out of ecliptic plane

Expected modification of the ISN He signal due to various tit the spin-axis with respect
to the ecliptic plane is important in the context of appamifferences in the fitted ISN He pa-
rameters obtained from the portions of the observationgechout with diferent tilts, as during
the 20132014 season (Leonard et al. 2015; McComas et al. 2015b), viteegpin-axis was al-
ternated betweer 0° and-4.9° tilts. For the 2012015 season, a filerent tilt change scheme
was planned, with the axis tilt alternating betweéra@id+5°. The dfect of various tilts of the

spin-axis on analysis of the ISN He is also studied bybiis et al. (2015).

Tilting the spin axis by a few degrees above or below the gcliplane results in a small
change in the orientation of the FOV in the sky (as shown irufegh), which translates into
sampling diferent portions of the ISN He beam. This results in markedfgdint signals for orbits
before and after the peak orbit, but practically no changee in the peak orbit, as illustrated in

Figure 6.

Figure 5 presents the spin-angle-averaged flux for orbit681and 68, normalized by the
maximum value for the season (specifically: by the valueutated for spin-angle 264, orbit 64),
simulated for three dlierent spin-axis tilts: the true one, which was close to tHgtec plane
(e = 0.7°), and the two opposite settings with= —5° ande = +5° belowabove the ecliptic plane.
The tilt of the spin axis shifts the position of the local pdak each orbit, with the largest shift
for the orbits most distant from the peak orbit. For the @rlwith maximum flux observed, the
modification of the peak position is very small. The change udiferent spin-axis tilt is mostly
seen in the branch of the flux before the peak for the givert,onbi, for spin-angles less than 264,

whene < 0, which means the northern hemisphere of the sky.

If this effect is properly addressed in the simulations, tilting thie sis in the observations
should not &ect the inferred parameters of ISN He gas. If, however, sonem@menon left out

from the current model modifies the gas either in front of srde the heliosphere, results of fitting
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Various spin axis pointing
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Fig. 5.— Lines of sight of the collimator boresight for obi61, 64, and 68 for the cases of
various spin-axis tilt. The solid line is the true pointingthwthe spin axis close to the ecliptic
plane € =~ 0.7°), the dashed line is spin-axis tilteeb® below the ecliptic plane, and the dotted
line is the spin-axis pointed5° above the ecliptic plane. The right-hand vertical axis &lext in

the spin-angles for orbit 64 to provide reference.
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for data from orbits with one tilt of the axis may systematicaary from results obtained for orbits
with a different tilt. The modification of the interstellar gas distitibn at the source region either
should break the symmetry of the gas distribution outsiddakt collision distance (see discussion
in Section 4.2), or systematically modify the gas enterimg lheliosphere, fiectively causing a
north—south asymmetry in the flow. An example of the latféea could be dterential filtration

in a non-axially symmetric outer heliosheath. Thus itisamant to have available observations for
different tilt angles of spin-axis because they may bring ingmaiinsight into possible departures
of the ISN He flow near or inside the heliosphere from the aggioms typically made in the
analysis, i.e., an axial symmetry of the flow around the infeous and the spatial uniformity of
the parent distribution. Such departures may possibly bdifred by diferential charge-exchange
ionization in the outer heliosheath, where the secondaly H& population is expected to be

produced at the expense of atoms from the primary population

4.2. Hfect of stop distance for atom tracking

Using a finite heliocentric distance for tracking atoms in WI'Ras physical grounds. The
theory used in the classical hot model of neutral interstelhs in the heliosphere is constructed
under the assumption that the gas is collisionless anddhegation falls ¢f with the square of the
solar distance, down to 0 at infinity. Neither is true in rgali he main factors that seem to disturb
this assumptions are collisions of ISN He atoms with eaclerotimd with ambient interstellar

matter.

At ~ 7500 K, a typical collision energy for He atoms~s10 eV. At collision energies of
~ 10 eV, the main collision reactiortfacting neutral He atoms is elastic collisions with protons
and H atoms. For a total density-©f0.2 cn2 in the LIC the mean free path (mfp) for this reaction
is ~ 120 AU. The cross section for resonant charge exchangel{eredfter) between He atoms

and He' ions is similar to the cross section for the H=~&bllisions, and since He is approximately
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ten-fold less abundant than H, the mfp for charge-exchaogisions for He in the LIC is on
the order of 1000 AU. Thus thefective mfp against collisions in the unperturbed LIC will be
~ 100 AU. The collision rate in the outer heliosheath will bemvarger (thus, the mfp shorter)
because of the increase in density and temperature of themeapected in this region. Inside the
heliopause, where no charged population of interstellatenaxists, and the neutral component
(both H and He) dominates, the density of the ambient matterduced approximately by a factor
of two (because the ionized component does not penetrakteliopause), which still leaves a non-
negligible collision rate. Thus the region of interest cartieated neither as collision-dominated,

nor as collision free.

Inside the termination shock, this collision rate beconrestically negligible in comparison
with the travel time to the Sun. Hence, a useful image of trablem is the following: there exists
a finite distance inside which no collisions happen, butidatef which the gas is collisionally
mixed. We refer to this distance as the distance of laststolli We estimate the value of this

parameter to be 150 AU from the Sun and set the tracking distangeo this value.

In addition to collisions, the gas in front of the heliosphés subjected to solar gravitation.
Gravitation attracts the atoms toward the Sun and increbsesspeeds, i.e., their kinetic energies
with respect to the Sun. Collisions tend to destroy the floneondy that is building up due to
the Sun’s gravity and may at least partially annihilate theeslup &ect by transferring the in-
creasing momentum to the degrees of freedom perpendicuthetdirection toward the Sun (an
isotropization &ect). If the gas is dominated by collisions, then a MHD modelazretion should
be used to describe its physical state. The other extrenine iagproach due to Danby & Camm
(1957), who describe the behavior of the fully collisiosl@scretion. The true behavior of the gas
must be somewhere in between, but to our knowledge, this togs not been thoroughly inves-
tigated. Therefore we adopt a scenario of a homogeneousrafwm distribution of interstellar

gas outside the last collision distance and a fully colligéss gas inside it.
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The dfect of gravity practically does noffect the gas temperature evenifgyr = 150 AU. Let
us assume with some exaggeration that the collisions ayeeffeictive in randomizing the atom
motion and that consequently, the entire increase in kiegiergy of the atoms due to the action of
solar gravity between infinity ang, goes into heating of the gas, with the bulk speed unchanged
due to the conservation of energy. For an atom that in infimiy energy corresponding to a speed
of 25.5 km s?, as obtained by Bzowski et al. (2015), the increase in itstkirenergy between
infinity andrg, = 150 AU will be by 1.8%. Thus the thermal energy of the gas, ansequently
its temperature, will be increased by this percentage, and§y = 7440 K, the temperature at
ryin Will be equal to 7570 K, i.e., larger by just 130 K. Such a small increase is much less than
the uncertainty in the temperature determination usingfdtie methods presented in this special
issue (Bzowski et al. 2015; &bius et al. 2015; Schwadron et al. 2015). Hence we conchatett
is reasonable to adopt the limiting distance for atom traglapproximately equal to the distance
of last collision for the atoms approaching the Sun, i.e~ 260 AU and to maintain that the flow
speed and temperature of the gas found from the model fittirdpta will yield representative

values for the gas much farther away from the heliosphere.

To assess the influence of the finite tracking distance on tefad signal in comparison
with the typically adopted tracking distance at infinity, waculated the expected flux for orbits
61, 64, and 68 tracking to 150 AU and to,800 AU and either for the true ionization rates, coming
out from the adopted model, or for null ionization. In adulitj we repeated the same simulations
for a number of intermediate tracking distances betweenat®030000 AU. Results are shown
in Figures 7 and 8. In the first of these figures, we show thesaif the signals with tracking
to 30 000 AU to the signal with tracking to 150 AU for the full rangéspin-angles in the ram
hemisphere. In the range of spin-angles occupied by the I8Ni¢hal, systematic fierences in
the simulated signal of 6% were obtained (see the left-hand panel of Figure 7). Thagd has
a systematic character and is directed downward for pr&-pdats and upward for the post-peak

orbits. The reason for this was the action of solar gravitg diferences for the cases with and
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Fig. 6.— Simulated bin-averaged flux (Equation 38) nornealizo the maximum value for the
season (orbit 64, spin-angle bin 264), calculated féedént spin-axis tilts. The solid lines show
the simulations with the true spin-axis pointing, i.e..sedo the ecliptic{ ~ 0.7°), the dashed lines
show the simulations with the spin-axis tiltedete: —5° with respect to the ecliptic and dotted lines
show the simulations with = +5° above the ecliptic. Note that the right-hand (southernhtinas
change relatively little with the change in the spin-axis while the left-hand (northern) branches
vary substantially in orbits 61 and 68, while the change egpin-axis tilt has a vanishindfect

on the flux in orbit 64.
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Fig. 7.— Left-hand panel: ratio of the signal modeled witbpstlistance equal 3000 AU to
150 AU. The vertical lines indicate the spin-angle rangerahpry ISN He observed biBEX
Solid lines present the calculation with the total ioniaatgiven for the times of detection with
a 1/r?2 dependence with solar distance, and dashed lines reptbsetalculation with ionization

equal zero. Right-hand panel: ratio of the solid to dashesslfrom the above figure.
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Fig. 8.— Ratio of the signals modeled with various stop dis¢grto the signal tracked to 150 AU,
shown as a function of adopted stop distance for Sis@n-angle bins from 252(dashed line)
to 282 (dotted line, the intermediate are solid). Lines of the sanler show the 6spin-angles
from the range where the primary ISN He is typically obserfgpin-angles 252—282) marked with

vertical lines in Figure 7.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

—48 —

without ionization are on the order of the thickness of thediin the figure. The fferences in the
signal shape due to neglecting the ionization between 18@a000 AU are on a level of. 2% for

the ISN He spin-angle range (see the right-hand panel ofr&igy below the numerical accuracy
of the model. On the other hand, théfdrences due to the action of solar gravity are not small
and certainly finding an optimum tracking distance, witheffects of collisions and solar gravity,
deserves a more in-depth study. Figure 8 suggests thatrfaclartg distances between1000 and
5000 AU from the Sun, the modification of the signal by solavgy with collisionless assumption

becomes less than 1%.

4.3. Integration of the flux over the spin-angle bins

The IBEX-Lo data used for ISN He gas analysis are integrated ovdaires in spin-angle
and over good time intervals for individual orbits. In thecton, we discuss thefecient method
adopted to approximate the flux within eachspin-angle bin, given as the average over the char-
acteristic spin-angle range for the given bin (see Equa@®n The method should provide the

desired accuracy with the smallest calculation load.

We adopted as accurate the results of averaging over the dhapled at a uniform mesh
with 0.125 step and integrated ovef ®ins using the trapezoidal rule. Taking this simulation
as baseline, we compared results of three methods, simgleasy to implement, to obtain the
simulations averaged ovef 6ins: (1) tabulating the flux with a°Gstep at the center of the bin
(thick dots in Figure 9), (2) arithmetic averaging of the fekampled every“l(the method used by
Bzowski et al. (2012) and Kubiak et al. (2014)), and (3) in&tigig a polynomial representation of

the flux, sampled every.8°, according to the formula from Equation 39.

Solution (1) is the worst. Generally, it gives justl.5% accuracy within the ISN signal range,

but for orbit 61 the accuracy is reduced to 10%. The accuraggiwith the increasing Earth’s
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longitude down to about 40% for spin-angles correspondirfgrtwings of the flux for orbit 68, as
illustrated in Figure 10. The estimates for the accuracyhefdentral (maximum) bins are 3%,
but the statistical accuracy of the data in these pixelsrgekt and thus the flux estimate must be
very good too. A comparison of the orange line connectinghiak dots with the tiny gray points
in Figure 9 illustrates the amount of information ignoredentthe true flux is approximated by
simple tabulation for the center of each bin. The stronggEtrénces occur in the portion of the
signal where the curvature as a function of spin-angle idakgest, i.e., at the peak and in the
bottom of the wings. In all, approximating the bin averaggshe center value for the°ins is

not accurate enough for fitting the ISN inflow parameters.

Arithmetic averaging over simulations sampled with*atep (method (2)) gives much better
results; the uncertainty is not lower than 2% for the wor&ita®8, i.e., only a little worse than
the diference in the simulation df (y) between both versions of WTPM. But this method still
features some systematic deviations as a function of spgtegsee Figure 11). The latteffect
almost vanishes for method (3), which gives the best appraton of the signal over spin-angle
from the three methods investigated. When tabulating theduery 15° we need to calculate
fewer points and the boundary values for a given spin-angieén be used twice to calculate
the bin-averaged flux for the neighboring bins. The accudddihe reproduction of the accurate
result of the simulation is better tharil@s, i.e., much better than the precision of simulgfdg).
Thus, averaging over spin-angle bins does not introducesgmyficant additional error. In all,
the calculation load in this aspect is reduced~b80% in comparison with the approach used in
method (2) by Bzowski et al. (2012) and Kubiak et al. (2014), aadtitionally, the accuracy is
higher. We have verified that using lower-order polynomdss not always provide af$igient
accuracy, while using a higher order method would not nec#gbring better results, but certainly
would increase the calculation load in comparison with étf2). Therefore we recommend

method (3) for use in fitting the ISN He flow parameters.
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Flux tabulated into 6-deg bins
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Fig. 9.— Collimator-integrated flux as a function of spin-Engampled with 25 step (tiny
gray points) and at the centers of thHebiins (thick dots). Purple dots mark the selected spin-angle

bins used, e.g. to show the change of the flux with time in L.
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Tabulated to 6-deg bins
1.1, — S ‘
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Fig. 10.— Ratio of the flux tabulated at the center of eatfoBange dots in Figure 9) to the flux
sampled with a fixed step of IR5’ (gray points in Figure 9), integrated using the trapezaidie!.

The vertical lines present the typical range of spin-anglesre the primary ISN He is observed.
The bias of the results due to the non-optimal sampling oflthein spin-angle is presented for
orbits 61 (blue), 64 (orange), and 68 (green). The deviationrease with the increase of the

detector’s ecliptic longitude and exceed the statisticalieacy of the data.
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5. Integration of the flux over good time intervals and the imprtance of the spacecraft

orbital velocity

Once the topic of averaging the flux ovéerlins is addressed, one faces the question of how
to calculate the flux averaged over good time intervals foivargorbit. The flux observed in a
given spin-angle bin on a given orbit varies with time. Theaton with time of the potentially
observed signal is on one hand due to the motion of the ISN ldelibrough the FOV because
of the motion of the Earth with thEBBEX spacecraft across the beam and on the other hand due
to the motion oflBEX relative to the Earth. This latter motion is illustrated iigtre 12, which
shows the Cartesian coordinates of velocity vectors of thithEgand the spacecraft relative to Sun.
If the motion of the spacecratft is neglected, the flux is daked with the use of the vectors shown
with broken lines. This latter motion is almost linear withnstant speed during an orbit, with
the change in direction by 1° day?, so the observed flux would be changing almost linearly,
with a relatively low second derivative over time, as ilhaseéd with broken lines in Figure 13. But
the proper velocity of the spacecraft cannot be neglectgab@ally at the beginning and toward
the end of the HASO intervals: in these portions of the spafeorbit around the Earth, the
spacecraft accelerates since it is far from its apogee argtfvelocity vector relative to the Sun
importantly difers from the velocity of the Earth relative to the Sun. The flaxation during
the orbit due to the geometric reasons is practically thg onportant source of signal changes
with time; the variation in the ionization rate on the timales of days modifies the ISN He flux

negligibly (Ruchski et al. 2003).

Neglecting the time variation of the flux during the orbit amgresenting the good-time-
averaged flux by the flux calculated for the middle of the HA8@rival may lead to inaccuracies
exemplified in Figure 14. Thefect increases away from the peak orbits and is on the ord@g6f 1
The influence of proper velocity of the spacecraft is the vestl the peak orbits (here: orbit 64)

and markedly increases for orbits before and after the pdak @herefore precise reconstruction
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Fig. 11.— Ratio of the flux averaged ovet ltins calculated using various averaging methods to

the bin-averaged flux sampled with a step dfaZF’, integrated using the trapezoidal rule, shown as

a function of spin-angle for orbits 61, 64, and 68. Dasheellirihe ratio for the flux calculated as

arithmetic averages ovef 6ins with sampling every©°l solid lines: the ratio for the flux sampled

with a step of 15°, averaged over°@in using a fourth order polynomial formula (Equation 39).
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Fig. 12.— Components of the Cartesian ecliptic coordinatekefelocity vector fofBEX (solid

line) and Earth (dashed line) relative to the Sun as a funcfalays during one orbit, here 64. The

magnitude of the variation of th&EX velocity is approximately 2 km$, but the correlation of

speed variations with the simulated flux changes shown iarEi@3 is evident. The time intervals

shown correspond to the HASO intervals, i.e., the interwdilen science data are taken IBEX

instruments.
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Fig. 13.— Relative time variation of the flux for selected spirgles (246, 264, 276: the points

marked in purple in Figure 9) for orbits 61, 64, 68, sampledtifie entire HASO times with a

timestep of 0.25 day. The solid lines show the flux simulatét e reallBEX velocity vectors,

and the dashed lines represent the flux simulated for thewhsn only the Earth’s velocity is

used in the computations. Lines of a given color are norredlizy dividing the corresponding flux

F (v, 1) by Frad¥, tmax) for the case with only Earth’s velocity. The drop or incre@sthe flux at

the beginning and end of the HASO times, shown by the sol&klirs due to the rapid increase in

the velocity of the spacecraft relative to the Earth at thgiréng and end of the HASO intervals

(see Figure 12).
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of the observation time should be implemented in the sirarfgirogram.

The prerequisite for the time-integration method is thatutst be stficiently accurate, robust
for various sets of parameters of the moddfjceent computationally, and easy to implement,
in that order. Figure 13 illustrates the problem that thestaweraging algorithm must address.
The time variation at the beginning and end of the HASO tingestiong and the flux ffers
considerably from the approximation of detector statigmalative to the Earth (compare the solid
and broken lines of the corresponding colors). On the othedhthe variation in the flux is almost
linear in the middle section of the orbit. If the good timeainials are located in the central portion
of the orbit, the problem seemingly simplifies because tlegmation routine must integrate an
almost linear function. But if one of the good time intervaliose to the beginning or the end of
HASO, the integration routine must cope with a rapidly vagyfunction with large higher-order

time derivatives.

This problem is easily solvable if one has the flux tabulated fine time resolution. Re-
grettably, adding more simulation points in time is the nustly operation from the computa-
tion viewpoint, so implementing an adjustable-step rautsacomputationally prohibitive. Hand-
picking the best time coverage from the viewpoint of all igxa a given orbit is, on the other hand,
too labor-intensive. Therefore we decided to develop amdement the procedure described in
Section 2.6 and we verified in a few test cases that the fluxatdzlat a resolution of 0.25 day is
adequately reproduced (i.e., with an accuracy d%) by the polynomial model defined in Sec-
tion 2.6. Thus, from the mean value theorem, the integral awgibinterval is also that accurate.
As non-standard as it may seem from the viewpoint of numkeardawe have verified that the

proposed system works reliably for the problem at hand.
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Ratio: meanTime/goodTimes
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Fig. 14.— Ratio of the flux calculated for the middle of HASO déisnto the flux averaged over

good times for orbits 61 (blue), 64 (orange), and 68 (gregmywn as a function of spin-angle.

See Bzowski et al. (2015) for the actually adopted good tirtervals.
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5.1. Modification of the flux by the collimator

In this section, we present an investigation of averagiedltix over the collimator transmis-
sion function and some important aspects that must be agittes the simulations. Depending
on the orientation of the ISN He beam relative to the collonatFOV, diferent portions of the
aperture play a dominant role in forming the observed sigridle maximum of the observed
flux does not necessarily coincide with the collimator biyjets This is illustrated in Figure 15,
which presents an example flux simulated for three orbitsfitee helium ISN season 2010 for the

spin-angle of the maximum flux of each orbit (it is spin-angfel).

Two snapshots of the flux are presented for each orbit, oredédfie transmission through
the collimator and one just after modification by the collior& response function. In the orbit
with maximal flux per season (e.g., orbit 64 in 2010 and edentaorbits during other seasons)
the maximum of the dierential flux occurs close to the collimator boresight aredfthx fills the
entire FOV. Consequently, the maximum of the post-colliméitox coincides almost exactly with
the collimator boresight and it contributes the dominantipo of the entire signal. On the other
hand, for the @-peak orbits, the maximum of the flux in the aperture occuss$ q the edge of
the FOV and the maximum of the collimator-processed sigoalirs at the side of the collimator
transmission function. Thus details of the response fanaind the shape of collimator must be
taken into account during modeling with special attentind suficient precision to avoid possible

bias.

5.1.1. How important are details of the collimator shape #sdesponse function?

Details of the collimator response function and implemeoreof integration over the FOV
were presented in Section 2.4. Here we discuss the sigréicahadopted shape and response

functions of the collimator on the simulated ISN He flux.
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Fig. 15.— Modification of the flux due to the collimator field\déw. Three orbits of the primary
ISN He are presented, 61 for the beginning of helium ISN seat for the peak of the ISN gas,
and 68 for the end of the helium ISN season. For all three othé spin-angle 264 for the peak
of the observed flux is presented. The left column shows thHenador response function for the
selected orbits; these plots are almost identical withaeisip the spin-axis direction in each orbit.
The central column shows the flux of ISN He as it is seenBiyX before transmission through

the collimator, and the right columns present the flux afterttansmission through the collimator.
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To assess the importance of the shape of the boundaries obliimator, we simulated the
signal with the same response function (following EquaBai, but with the diferent shapes of
the aperture boundary: circular and hexagonal. The rafitlseocollimator-averaged fluxes for
these two are presented in the left-hand panel in Figure 16.fahd that there is almost no
difference in the flux for orbits 61 and 64, but for orbit 68, adagt circular boundary introduces
an error of~ 1% within the spin-angle range of the ISN He signal, and up%odtside. It is
because the signal in orbit 68 is sampled only by the edgeeoédiimator’'s FOV (see the lower
row of Figure 15). Thus, if one does not require an accurattgbthan~ 1%, approximating the
aperture shape by a circle is acceptable. Since implenamiaitthe required hexagonal shape of
the aperture in the simulations does not induce an addittmmaputational burden, we recommend

keeping the collimator hexagonal in shape.

We also investigated the importance of precise reproductidhe profile of the transmission
function. Specifically, we checked thel@irences in the collimator transmission function simulated
either for all four collimator quadrants of the low-resadut type, as used by Bzowski et al. (2012)
and Kubiak et al. (2014)T{,w in Equation 31), and the more realistic function, includimath
low- and high-resolution sections, presented in this pépguation 31). We found that the flux is
modified up to 4% in the region of the main signal of the primi&§ He. The correct flux can be
either increased or decreased, depending on the orbitislhésause the placement of the ISN He
beam in the aperture changes from one orbit to another, wsdrdted in Figure 15. Again, the
largest &ect is observed for the faffiepeak orbit 68. The replacement of the high-resolution with
the low-resolution quadrant in the simulations very likeused the model used by Bzowski et al.

(2012) to be imprecise from about 1% to 4%, depending on thalated orbit and spin-angle.
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Collimator shape: circular vs hexagonal Collimator response function: lo-res vs total

61 68 61 68

1.04] 1 1.04} ]
9 .
®

. 1.00F 1
0.98 W ] 0.98f

200 250 300 350 ’ 200 250 300 350
spin angle [deg] spin angle [deg]

ratio

Fig. 16.— Influence of dferent assumptions on the aperture shape and responsefuatthe
collimator on the simulated flux, shown for the observati@ometry for orbits 61, 64, and 68.
The color code is shown in the panels. The left panel showsati®of the fluxes calculated with
the circular and hexagonal apertures for the same respans#édn (according to Equation 31).
The right panel shows the ratio of the fluxes calculated wWithresponse function corresponding
to four low-resolution sectionsT(,, in Equation 31) and the full model, including both the low-
and high-resolution sections, for hexagonal aperture. tioevertical lines indicate the range in

spin-angle where the primary ISN He is observed.
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5.2. The role of ionization
5.2.1. lonization processes and their variation with time &eliolatitude

The ionization rate of neutral He in the heliosphere is a sfimats of photoionization,
electron-impact, and charge exchange. The latter one &igaly negligible (see Figure 17),
and the electron rate is important mostly inside AU from the Sun because it drops with the
solar distance more rapidly tharir? (see, e.g., Figure 2 in Bzowski et al. (2013a)). The electron
rate features a strong latitudinal anisotropy that appnaxely follows the latitudinal structure of
the solar wind, which, together with the departures fromihé fall off with distance, makes it
challenging to be precisely account for in an analytic eggi@n for the total ionization losses of
ISN He. The photoionization rate in the ecliptic plane wdswated by Sokt & Bzowski (2014)
from spectral irradiances measured by TIMED (Woods et &1520Charge exchange is calculated
for the relative speed of the products with the latitudimad #me variation of the solar wind taken

into account following the solar wind structure from $bkt al. (2013).

The aspect of latitudinal dependence of the photoioninatéte is the poorest investigated.
As discussed by Bzowski et al. (2013b, pp. 67-138), some ¢tieal expectations by Cook et al.
(1980, 1981) and remote-sensing measurements of the ¢dhaxdy Auchere et al. (2005a,b)
suggest that such an anisotropy should exist and varyvelatittle with solar cycle even though
instantaneous fluctuations may be quite substantial (gped-v in Katushkina et al. (2014)). On
the other hand, based on analysis of ISN He flux on &\&sesWitte (2004) suggested that the
anisotropy may be as high as 50%, while Kiselman et al. (2p&ihted out that the solar spectrum
does not vary with heliolatitude, which may imply that thes@o heliolatitude dependence of the
photoionization rate. The numerical version of WTPM adoptsuaalytic ellipsoidal model of the
photoionization rate as a function of heliolatitude, déssat by Equation 3.4 in Bzowski et al.

(2013b, pp. 67-138), with the polar rates equal ® df the equatorial ones.
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Recent studies (Snow et al. 2014; Wieman et al. 2014) shovatdhé rate of the dominant
ionization process for helium, i.e., photoionization, ntegybiased by systematic instrumental ef-
fects. This topic is still a subject of research, but for now @annot rule out that the ionization
model we use is systematically biased upward or downwarscrBpancies between photoioniza-
tion rates calculated usingfterent assumptions on this bias are up-t@0% (see discussion in

Sokdt & Bzowski (2014)).

The history of ionization at 1 AU in the ecliptic plane adaptas the baseline ionization
model in this paper and the accompanying papers (Bzowski 80ab; Galli et al. 2015; Sak
et al. 2015; Swaczyna et al. 2015) is shown in Figure 17, winexddition to the total rate, we also
present the rates of individual reactions. The time seffi¢leototal ionization rate in the ecliptic
plane at 1 AU used in this study is available in the Data Rel@a3&e main &ect of the variation
in the ionization rate on the ISN He gas at 1 AU from the Sun isodutation of the local helium
density. The scale of thidtect was studied by Rutski et al. (2003) for a model variation of the
ionization rate, and by Bzowski et al. (2013a) and &adt al. (in preparation) for the realistic
ionization. Variations of the ionization rate during théesaycle cause variations in the density of
ISN He at 1 AU, and thus in the ISN He flux, with an amplitude~o. Detailed analysis of the

effects of ionization losses on the flux measuredBiyX is presented in the next section.

5.2.2. Hfects of ionization losses on the absolute flux measureB B

Attenuation of the ISN He flux observed BBEX-Lo by ionization losses is approximately
by a factor of~ 1.7 for 2010, when the ionization rate was low due to low soldivdyg. During
higher activity times, this attenuation will be approxielgttwo-fold larger. Therefore,fiects of
ionization on the absolute flux observed IBEX must be taken into account when one wants to
analyze data from a number of observation seasons coverimgeaval of changing solar activity.

In fact, the first ISN He gas observations were made in Z09 during the extended solar min-
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Fig. 17.— Time series of rates of the relevant ionizationcpsses of neutral interstellar He at
1 AU from the Sun. Shown are rates for: photoionizatiég), from the updated model proposed
by Solot & Bzowski (2014), electron-impact for the slow solar wingl( following the model
by Rucihski & Fahr (1989, 1991) and Bzowski et al. (2013a)), chargdharge g.) rates for all
relevant reactiongs,.: He + H* — Hena + HES ), Boot He + @ —HY, + Hel |, Bexs: He+ a —
Heena + He?)) (Bzowski et al. 2013a), and the sum of them, the total iompatates ;o) as it is
used in the analytic WTPM. In the numerical version of WTH,is adopted as the baseline rate
for the solar equator, but additionally, the latitudinatistions of the contributing rates are taken

into account. The time series Bf; are available in the Data Release 9.
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imum, while the most recent ones, from 20213 and 2012014, were carried out during the
maximum of solar activity. On the other hand, when data framlatively short interval of a few
months are analyzed, details of the ionization rate chabgesme less important, as we show in

the following subsections.

5.2.3. Importance of ionization in the analysis of ISN He glaserved byBEX

Analysis ofIBEX-Lo observations of ISN He gas is usually carried out for catlasets cov-

ering individual seasons (Bzowski et al. 2012; Bzowski et QL% Mobius et al. 2012; Leonard
et al. 2015; McComas et al. 2015b). The analysis based on Higtiannterpretation model by
Lee et al. (2012) assumes stationary spherically symmietrization and is focused on moments
of the observed ISN He beam: spin-angle of the peaks and #re ladths for individual orbits.
It is sometimes assumed that the ionization losses aregitdglfor the modeling because they do
not introduce any important bias into the results. To vethig we simulated the ISN He beam for
orbits 61 through 68 either assuming zero ionization or sidgghe ionization rate as it comes out
from the ionization model presented in Section 5.2.1. Thewtaions were performed using the
analytic version of WTPM. With the ISN He beam calculated facleorbit, we fitted a Gaussian
functionF (y) = fo exp[— (¥ — Wo)? /0-2] to both sets of simulations with free paramet&répeak

height),¥, (spin-angle of the peak), ard(width of the peak).

Results are shown in Figure 18. Neglecting the ionizatioa vatually does not move the
positions of the peak of the observed beams: tliemdince is on the order of@5. Also the
width of the beams is littleféected: neglecting the ionization increases the beam width®@03,
which translates into a flerence in fitted temperature ef20 K. Of course, the peak heights are
affected quite strongly — the early orbits in the season by afaxft1.8 and the latest orbits by a
factor of~ 1.6 — but neglecting the ionization reduces the ecliptic ltundg of the maximum flux

by only ~ 0.25°.
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In the analysis using the method developed by Swaczyna €Cl5), one calculates a nor-
malization factor to scale the model values to measuredta@es and performg? fitting of
the ISN He flow parameters, looking for the scaling factorasafely for each test parameter set.
The drivers for the fitted parameters are relations betweewalues of simulated data points for
individual orbits and between the orbits during one obd@rtaseason. Important are relations
between individual data points. lonization losses makeoagty correlated ect on all simulated
data points: the primefkect is the reduction in intensity and changes of relatiortevéen the
points (higher losses for some pixels, lower for others)aasecondaryféect. To assess potential
influence of the hypothetical bias in the ionization ratetmresults of modeling the ISN He flux
observed byIBEX, we simulated the extreme cases, i.e., one with the cuyres#d ionization
model and the other assuming an ionization rate of 0. Thierlaase is important as the limiting

case for the systematic uncertainties of the ionizatios, raentioned in Section 5.2.1.

Consequences of neglecting of the ionization in the ISN Heeatiogl for the signal shape are

presented in Figure 19, which shows the rafi@), defined as follows:

F(W’IB = O)/F(lpmax,ﬁ = O)
F(y,B(1))/F(Wmax B(1)

whereg(t) ands = 0 denote the cases with and without ionization, respegtiagldy .« represents

qw) = (47)

the spin-angle bin with maximal flux for a given case.

The modification of the normalized ISN He flux increases frbmn peak orbit 64 toward the
side orbits (upward for pre-peak and downward for post-pmdits for the ISN He spin-angle
range) and extend from about 5% in the peak position to 10%easlopes of the signal. The
discrepancies grow further with the spin-angle values aardreach 40% in the most extreme
case, which, however, is for spin-angles less interestinghfe studies on the ISN He primary
population. Hence, it is not appropriate to neglect thezaton altogether if one wants to model
a detailed distribution of the signal in the IBins, as is needed in the analysis method presented by

Swaczyna et al. (2015). The deviations strongly exceed #esarement uncertainties, except for
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the pixels at the far wings of the measured signal.

In the following subsections, we will investigate resulfsvarious dfects in the ionization

rate model used for analysis of ISN He gas. Results of this/aisahre collected in Figure 20.

Effect of latitudinal anisotropy of photoionization

The dfect of latitudinal anisotropy of photoionization on sintiga of ISN He flux is illustrated
by the green lines in Figure 20. From the viewpoint of ISN He gaalysis it is negligible for
all orbits, the diterence between the spherically symmetric and anisotropization rate are on
the order of 1% at the boundary of the signal region used irattadysis, and nearly null for the
spin-angle bins at the peak. Potentially, it might be of somgortance for the Warm Breeze
orbits, which feature a much wider distribution of the sigmat surprisingly, the signatures of the
hypothetical latitudinal anisotropy of the photoionipaitirate are largest for the spin-angle ranges

corresponding to the solar poles.

Effect of charge exchange

Th effect of charge exchange with solar wind particles is illustldy the orange lines in Figure 20.
We compare the flux calculated with photoionization onlyhite flux calculated assuming ioniza-
tion rate as a sum of the photoionization and the charge egehate, taking latitudinal anisotropy
into account in both cases. Theext for the absolute level of the flux 4s 1.5% for the peak of

the signal, much less for the shape of the signal. Thus clexgigange ionization is negligible for

the ISN He observed b\ BEX.
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Effect of electron ionization

The dfect of electron-impact ionization is illustrated by the perlines in Figure 20. Electron
ionization modifies the absolute flux by a few percent (from &%he peak of orbit 68 te 6%

at the peak of orbit 61, with a 5% modification for orbit 64).uBhthe &ect on the orbit-to-orbit
ratios of the peak bins is comparable to the uncertainty dubed Poisson statistics for the peak

pixels and practically negligible as much less than thissutainty in all other pixels.

5.3. All departures from the standard model together

In this section we show a comparison of the flux simulatedragsy only spherically sym-
metric ionization given by the sum of all relevant processil the values taken for the moment
of the calculation for a given orbit, but otherwise invateaf.e., no time dependence of the ioniza-
tion rate along the trajectory) with the full model of the imattion rate, i.e., for the time-dependent
ionization, with heliolatitude anisotropy and notri dependence of electron impact rate. This is
illustrated with the blue lines in Figure 20. All details dietionization rate together reduce the
total ISN He flux from 5% to 15%, depending on the orbit and spigle. The fect as a function
of spin-angle within individual orbits is small (on a levdl 1% between the peak and the wings),
and from orbit to orbit it is approximately#2%, with pre-peak orbits systematically reduced and
post-peak orbits enhanced. The 2%eet is on the order of Poisson uncertainty of the peak pixels

and is much less in the other pixels.

In summary, details of the ionization rate are of minor imtance for analysis of individ-
ual seasons of ISN He measurements. However, they may baogooetant when one analyzes
several seasons together using the method discussed byyaaat al. (2015), especially if they
are from the times of markedly fiierent solar activity. The main factor will be the change ia th

solar photoionization rate which is the mosfegtive ionization for ISN He, which may modify
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the absolute level of the flux by a factor of two from solar minim to maximum. Thus a lack of

credible ionization model may in this case hamper findingaistically satisfactory solution.

6. Summary and conclusions

We developed a new version of the WTPM, specially tailoredafmalysis of interstellar neu-
tral atom flux observed B BEX. The model now has two strains, aWTPM and nWTPM, which are
complementary to each other. We present them in detailginettms of both the physical assump-
tions and the implementation aspects, and show that theyrgsults that agree to at least 1% when
run under identical assumptions (Figure 4). aWTPM uses ali$iatbapproach to the calculation
of ionization losses, but due to implementation details itvell suited for investigatingfiects
of various physical and measurement aspects, like, e.g-Maxwellian distribution function of
ISN He in the LIC (Sokt et al. 2015, this volume), or various approximations te ¢tollimator
transmission function (Figure 16). nWTPM is a heavy-dutysi@r for mass-scale calculations,
needed to fit the model parameters to the data, and includlggifoe- and latitude-dependent
ionization losses. NWTPM is a strongly optimized and refinesion of the WTPM model used
by Bzowski et al. (2012, 2013a); Bzowski et al. (2014), Kubitkle(2013); Kubiak et al. (2014),
Rodiiguez Moreno et al. (2013, 2014), Park et al. (2014), and Mc&oet al. (2015b) in their
analyses of various species of interstellar gas in the $ghiere, observed BEX or Ulysses
aWTPM was used by Séket al. (2015) and Galli et al. (2015) in the search for tHedaak in
ISN He and discussion of the expected low-level “haze” indkge due to extended wings of the
Warm Breeze and ISN He populations. A brief comparison of aW &P nWTPM is provided
in Table 1 at the end of Section 2.8.

We analyzed the influence of a number difeets that may be tempting to neglect in the
simulation and show how theyffact the results of simulations needed to fit the data using the

method developed by Swaczyna et al. (2015). Thé&sets are listed in Table 4 with commentaries
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on their significance. The significance of theskeets in the analysis method developed by Lee
et al. (2012) is presented byddius et al. (2015); an exception is the influence of the wmtn
rate for the determination of the flux maximum longitude gltime Earth’s orbit, which we present

in Section 5.2.3 (Figure 18).

Generally, most of theftects we have considered modify the signal by a few perceren t
spin-angle range characteristic for the primary ISN He ajmon, but much stronger just outside
it, where the Warm Breeze discovered by Kubiak et al. (2014igible. We conclude that in order
to maintain a homogeneous accuracy for all simulated datdgp@ne needs to take almost all the
listed dfects into account in the calculation because they are of acabte strength. We point out
that for the purpose of fitting a model to the data, one mussiden the precision needed in the
simulations of individual data points, which is directlyjated to the measurement uncertainties
and correlations between various data points. This aspeliscussed in an accompanying paper

by Swaczyna et al. (2015).

WTPM in its present version seems to be a tool very well suitedrtalysis oflBEX-Lo
measurements of ISN neutrals, which feature an unprecedignitiigh signal-to-noise ratio of
~ 1000. We were able to streamline and refine the algorithmaictiie code now runs faster and
IS more accurate than it was previously. Results of this amabre presented in the accompanying

papers by Bzowski et al. (2015), Swlet al. (2015), and Galli et al. (2015).
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Fig. 18.— Ratio of the peak heights (left-hand panel) arftecknces between peak positions
(middle panel) and widths of the peaks (right-hand panef@iobd for a model of ISN He flux
observed in orbits 61 through 68 for an ionization rate of @ an ionization realistic for the

epoch of observations, given By; shown in Figure 17. The beam parameters were obtained from

Gaussian fits to the flux as a function of spin-angle.
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o Effect of ionization: =0/ B(t)
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Fig. 19.— Ratio of the normalized to maximal value of the fluxglated with an ionization of
zero to an ionization given for the time of detectigiy,(in Figure 17) for orbits 61, 64, and 68.
Two vertical grids illustrate the range in spin-angle whiaeprimary ISN He is mainly observed.

The normalization factor for the absolute fluxes .ig4lfor orbit 64, spin-angle 264.
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Fig. 20.— Htfects of various components of the total ionization rate @ndhsolute level of
the signal, simulated for the primary ISN He population gsine numeric version of WTPM.
Shown are results for three orbits: 61 (dashed), 64 (sdb@)dotted). Green lines present the
ratio of simulations for spherically symmetric photoicatipn to simulation with photoionization
modulated with heliolatitude (gect of latitudinal anisotropy of photoionization). Oranigees
show the ratio of calculations with the 3D photoionizatioritie ionization being a sum of the 3D
photoionization and charge exchange reactions with salad wrotons andv-particles (&ect of
charge exchange). Purple lines illustrate the ratio of thal ionization without accounting for
the electron impact-ionization to ionization with electrimpact-ionization for slow solar wind
included (role of electrons). Blue lines present the ratigiofulations with the total ionization
(Biot In Figure 17) for the time of detection given only by in-etigpvalues (similar as Figure 4)
to ionization with the history, latitudinal anisotropy,danorrect electron-impact distance-relation
taken into account. The vertical lines mark the spin-anglge of observations of the primary

ISN He population.
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Table 4: Resume offeects included in WTPM and their significance in the modelingSH He
flux observed byBEX-Lo

Effect Section, Equa: Commentary and Recommendation

tion, Figure
Non-zero  tilt| Sections: 2.3| Important, must be included; seedkius et al.
of spin-axis| 4.1, Figure: 6 (2015).

relative to the

ecliptic plane

Orbital motion

of the spacecraft

Sections: 2.3, 5
Figures: 12,13

Adopting the Earth’s velocity relative to the Sun
instead of the vector sum of the Earth’s velocity
and thelBEX velocity relative to Earth féects the
result depending on the time distance of the mod-
eled good time interval from the beginning and end
of HASO times; strongly recommended at least for
the orbits where good times are short and near the

HASO boundaries.

Finite versus in-

finite distance to

Sections: 2.1

4.2; Figure: 8

Physical sense: the distance of last collisions for

atoms before entering the heliosphere; changing

the source re; this distance from~ 150 AU to infinity modifies
gion of ISN He the simulated signal up t65%. The &ect is cor-
atoms related for diferent orbits, butfiects ISN param-

eter results only weakly; the mainfiirence is in
the fitted inflow speed (by 0.25 km s1), with re-
sulting uncertainty in the other parameters due to

parameter correlation.
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Effect Section, Equai Commentary and Recommendation
tion, Figure
Details of | Sections:  2.4] The broadening of the beam by the collimator must

collimator trans-

mission function

and shape of the Figures:

5.1; Equations
30 through 37;
2, 3,

be taken into account. Approximating the collima-
tor as fully low-resolution versus true introduces a

~ 4% error in the flux, dferent for diferent or-

aperture 15,16 bits and pixels. The aperture shape can be approx-
imated by a circle (deviations on the order of 1%
visible only when the ISN beam is skimming the
FOV, e.g., orbit 61). Recommendation: approxi-
mate the hexagonal FOV by circular.

Averaging over| Sections: 2.5/ Tabulating the flux at the centers of theléns in-

6° bins versug 4.3; Figures: 9, stead of averaging is potentially inaccurate up to

adopting center 10, 11 20% in some pixels. Arithmetic average for a tab-

value for the bin

ulation every 1 is acceptable (errors of 1%),
much better results obtained with sampling every

1.5° and using the formula from Equation 39.
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Effect

Section, Equa;

tion, Figure

Commentary and Recommendation

Averaging over

good time in-

tervals  versus
adopting middle

HASO time

Sections: 2.3, 5
2.6; Equations
40 through 44;
Figures: 12,13

Signal varies during the orbit because the beam
moves through the field of view due to the space-
craft’'s motion with Earth. The orbit-integrated sig-
nal is dfected by the uneven distribution of good
time intervals during the orbit. Actual magnitude
depends on details of good times, especially the
distance from HASO boundaries; recommended to

account for this.

lonization losses

Sections: 2.2
5.2; Equations
2, 18; Figures:

17,18, 19, 20

Important for the evaluation of the absolute values,
e.g., for simultaneous analysis of seasons with sig-
nificantly different solar activity. Photoionization
is responsible for 85% of the losses, electron im-
pact for~ 10%, and charge exchange5%. The
latitudinal anisotropy fect is negligible. When
modeling one ISN season and scaling the simula-
tions to the data, ionizatiorflects are of secondary

importance.
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